BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

537 related articles for article (PubMed ID: 25524628)

  • 1. Human 3D vascularized organotypic microfluidic assays to study breast cancer cell extravasation.
    Jeon JS; Bersini S; Gilardi M; Dubini G; Charest JL; Moretti M; Kamm RD
    Proc Natl Acad Sci U S A; 2015 Jan; 112(1):214-9. PubMed ID: 25524628
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A microfluidic 3D in vitro model for specificity of breast cancer metastasis to bone.
    Bersini S; Jeon JS; Dubini G; Arrigoni C; Chung S; Charest JL; Moretti M; Kamm RD
    Biomaterials; 2014 Mar; 35(8):2454-61. PubMed ID: 24388382
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microfluidic platform for studying osteocyte mechanoregulation of breast cancer bone metastasis.
    Mei X; Middleton K; Shim D; Wan Q; Xu L; Ma YV; Devadas D; Walji N; Wang L; Young EWK; You L
    Integr Biol (Camb); 2019 Apr; 11(4):119-129. PubMed ID: 31125041
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PO-12 - The key role of talin-1 in cancer cell extravasation dissected through human vascularized 3D microfluidic model.
    Gilardi M; Bersini S; Calleja AB; Kamm RD; Vanoni M; Moretti M
    Thromb Res; 2016 Apr; 140 Suppl 1():S180-1. PubMed ID: 27161700
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effects of monocytes on tumor cell extravasation in a 3D vascularized microfluidic model.
    Boussommier-Calleja A; Atiyas Y; Haase K; Headley M; Lewis C; Kamm RD
    Biomaterials; 2019 Apr; 198():180-193. PubMed ID: 29548546
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A SERS-assisted 3D organotypic microfluidic chip for in-situ visualization and monitoring breast cancer extravasation process.
    Qian Z; Wang Z; Zhu K; Yang K; Wu L; Zong S; Wang Z
    Talanta; 2024 Apr; 270():125633. PubMed ID: 38199123
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A bioengineered array of 3D microvessels for vascular permeability assay.
    Lee H; Kim S; Chung M; Kim JH; Jeon NL
    Microvasc Res; 2014 Jan; 91():90-8. PubMed ID: 24333621
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integration of intra- and extravasation in one cell-based microfluidic chip for the study of cancer metastasis.
    Shin MK; Kim SK; Jung H
    Lab Chip; 2011 Nov; 11(22):3880-7. PubMed ID: 21975823
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A microfluidic platform for modeling metastatic cancer cell matrix invasion.
    Blaha L; Zhang C; Cabodi M; Wong JY
    Biofabrication; 2017 Sep; 9(4):045001. PubMed ID: 28812983
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vascularized microfluidic platforms to mimic the tumor microenvironment.
    Michna R; Gadde M; Ozkan A; DeWitt M; Rylander M
    Biotechnol Bioeng; 2018 Nov; 115(11):2793-2806. PubMed ID: 29940072
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Elucidating cancer-vascular paracrine signaling using a human organotypic breast cancer cell extravasation model.
    Humayun M; Ayuso JM; Brenneke RA; Virumbrales-Muñoz M; Lugo-Cintrón K; Kerr S; Ponik SM; Beebe DJ
    Biomaterials; 2021 Mar; 270():120640. PubMed ID: 33592387
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 3D functional and perfusable microvascular networks for organotypic microfluidic models.
    Bersini S; Moretti M
    J Mater Sci Mater Med; 2015 May; 26(5):180. PubMed ID: 25893395
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterizing the effect of substrate stiffness on the extravasation potential of breast cancer cells using a 3D microfluidic model.
    Azadi S; Tafazzoli Shadpour M; Warkiani ME
    Biotechnol Bioeng; 2021 Feb; 118(2):823-835. PubMed ID: 33111314
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanisms of tumor cell extravasation in an in vitro microvascular network platform.
    Chen MB; Whisler JA; Jeon JS; Kamm RD
    Integr Biol (Camb); 2013 Oct; 5(10):1262-71. PubMed ID: 23995847
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Image-Assisted Microvessel-on-a-Chip Platform for Studying Cancer Cell Transendothelial Migration Dynamics.
    Bertulli C; Gerigk M; Piano N; Liu Y; Zhang D; Müller T; Knowles TJ; Huang YYS
    Sci Rep; 2018 Aug; 8(1):12480. PubMed ID: 30127372
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Using microfluidics to investigate tumor cell extravasation and T-cell immunotherapies.
    Pavesi A; Tan AT; Chen MB; Adriani G; Bertoletti A; Kamm RD
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():1853-6. PubMed ID: 26736642
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effects of luminal and trans-endothelial fluid flows on the extravasation and tissue invasion of tumor cells in a 3D in vitro microvascular platform.
    Hajal C; Ibrahim L; Serrano JC; Offeddu GS; Kamm RD
    Biomaterials; 2021 Jan; 265():120470. PubMed ID: 33190735
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On-chip human microvasculature assay for visualization and quantification of tumor cell extravasation dynamics.
    Chen MB; Whisler JA; Fröse J; Yu C; Shin Y; Kamm RD
    Nat Protoc; 2017 May; 12(5):865-880. PubMed ID: 28358393
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A microfluidic platform for drug screening in a 3D cancer microenvironment.
    Pandya HJ; Dhingra K; Prabhakar D; Chandrasekar V; Natarajan SK; Vasan AS; Kulkarni A; Shafiee H
    Biosens Bioelectron; 2017 Aug; 94():632-642. PubMed ID: 28371753
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tunable Collagen Microfluidic Platform to Study Nanoparticle Transport in the Tumor Microenvironment.
    DeWitt MR; Rylander MN
    Methods Mol Biol; 2018; 1831():159-178. PubMed ID: 30051431
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.