These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 25524756)

  • 1. Two-stage estimation for multivariate recurrent event data with a dependent terminal event.
    Chen CM; Chuang YW; Shen PS
    Biom J; 2015 Mar; 57(2):215-33. PubMed ID: 25524756
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The partly Aalen's model for recurrent event data with a dependent terminal event.
    Chen CM; Shen PS; Chuang YW
    Stat Med; 2016 Jan; 35(2):268-81. PubMed ID: 26265213
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multivariate frailty models for two types of recurrent events with a dependent terminal event: application to breast cancer data.
    Mazroui Y; Mathoulin-PĂ©lissier S; Macgrogan G; Brouste V; Rondeau V
    Biom J; 2013 Nov; 55(6):866-84. PubMed ID: 23929494
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Semiparametric analysis of correlated recurrent and terminal events.
    Ye Y; Kalbfleisch JD; Schaubel DE
    Biometrics; 2007 Mar; 63(1):78-87. PubMed ID: 17447932
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Shared frailty models for recurrent events and a terminal event.
    Liu L; Wolfe RA; Huang X
    Biometrics; 2004 Sep; 60(3):747-56. PubMed ID: 15339298
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An estimating function approach to the analysis of recurrent and terminal events.
    Kalbfleisch JD; Schaubel DE; Ye Y; Gong Q
    Biometrics; 2013 Jun; 69(2):366-74. PubMed ID: 23651362
    [TBL] [Abstract][Full Text] [Related]  

  • 7. General joint frailty model for recurrent event data with a dependent terminal event: Application to follicular lymphoma data.
    Mazroui Y; Mathoulin-Pelissier S; Soubeyran P; Rondeau V
    Stat Med; 2012 May; 31(11-12):1162-76. PubMed ID: 22307954
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Bayesian joint model of recurrent events and a terminal event.
    Li Z; Chinchilli VM; Wang M
    Biom J; 2019 Jan; 61(1):187-202. PubMed ID: 30479030
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Joint model for recurrent event data with a cured fraction and a terminal event.
    Kim YJ
    Biom J; 2020 Jan; 62(1):24-33. PubMed ID: 31544257
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Non-parametric estimation and model checking procedures for marginal gap time distributions for recurrent events.
    Kvist K; Gerster M; Andersen PK; Kessing LV
    Stat Med; 2007 Dec; 26(30):5394-410. PubMed ID: 17994608
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of multivariate recurrent event data with time-dependent covariates and informative censoring.
    Zhao X; Liu L; Liu Y; Xu W
    Biom J; 2012 Sep; 54(5):585-99. PubMed ID: 22886587
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Flexible estimation of differences in treatment-specific recurrent event means in the presence of a terminating event.
    Pan Q; Schaubel DE
    Biometrics; 2009 Sep; 65(3):753-61. PubMed ID: 19053997
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Time-varying coefficients in a multivariate frailty model: Application to breast cancer recurrences of several types and death.
    Mazroui Y; Mauguen A; Mathoulin-PĂ©lissier S; MacGrogan G; Brouste V; Rondeau V
    Lifetime Data Anal; 2016 Apr; 22(2):191-215. PubMed ID: 25944225
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A dynamic frailty model for multivariate survival data.
    Yue H; Chan KS
    Biometrics; 1997 Sep; 53(3):785-93. PubMed ID: 9333346
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regression analysis for recurrent events data under dependent censoring.
    Hsieh JJ; Ding AA; Wang W
    Biometrics; 2011 Sep; 67(3):719-29. PubMed ID: 21039394
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Relapsing and recurrent peritoneal dialysis-associated peritonitis: a multicenter registry study.
    Burke M; Hawley CM; Badve SV; McDonald SP; Brown FG; Boudville N; Wiggins KJ; Bannister KM; Johnson DW
    Am J Kidney Dis; 2011 Sep; 58(3):429-36. PubMed ID: 21601333
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Joint frailty models for recurring events and death using maximum penalized likelihood estimation: application on cancer events.
    Rondeau V; Mathoulin-Pelissier S; Jacqmin-Gadda H; Brouste V; Soubeyran P
    Biostatistics; 2007 Oct; 8(4):708-21. PubMed ID: 17267392
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Estimation of multivariate frailty models using penalized partial likelihood.
    Ripatti S; Palmgren J
    Biometrics; 2000 Dec; 56(4):1016-22. PubMed ID: 11129456
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Partly conditional survival models for longitudinal data.
    Zheng Y; Heagerty PJ
    Biometrics; 2005 Jun; 61(2):379-91. PubMed ID: 16011684
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Estimating survival and association in a semicompeting risks model.
    Lakhal L; Rivest LP; Abdous B
    Biometrics; 2008 Mar; 64(1):180-8. PubMed ID: 17645782
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.