These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
48. Statistical mechanics of worm-like polymers from a new generating function. Carri GA; Marucho M J Chem Phys; 2004 Sep; 121(12):6064-77. PubMed ID: 15367035 [TBL] [Abstract][Full Text] [Related]
49. Theory and Monte Carlo simulations for the stretching of flexible and semiflexible single polymer chains under external fields. Manca F; Giordano S; Palla PL; Cleri F; Colombo L J Chem Phys; 2012 Dec; 137(24):244907. PubMed ID: 23277956 [TBL] [Abstract][Full Text] [Related]
50. Local mechanical response in semiflexible polymer networks subjected to an axisymmetric prestress. Head DA; Mizuno D Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Aug; 88(2):022717. PubMed ID: 24032874 [TBL] [Abstract][Full Text] [Related]
51. Eigenvalues for the transition matrix of a small-world scale-free network: Explicit expressions and applications. Zhang Z; Lin Y; Guo X Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jun; 91(6):062808. PubMed ID: 26172755 [TBL] [Abstract][Full Text] [Related]
52. Translational and rotational diffusion of a single nanorod in unentangled polymer melts. Kim MJ; Cho HW; Kim J; Kim H; Sung BJ Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Oct; 92(4):042601. PubMed ID: 26565264 [TBL] [Abstract][Full Text] [Related]
53. Mesoscale simulation of semiflexible chains. I. Endpoint distribution and chain dynamics. Groot RD J Chem Phys; 2013 Jun; 138(22):224903. PubMed ID: 23781817 [TBL] [Abstract][Full Text] [Related]
54. Dynamical scaling behavior of percolation clusters in scale-free networks. Jasch F; von Ferber Ch; Blumen A Phys Rev E Stat Nonlin Soft Matter Phys; 2004; 70(1 Pt 2):016112. PubMed ID: 15324134 [TBL] [Abstract][Full Text] [Related]
55. Free energy of twisted semiflexible polymers. Sinha S Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jun; 77(6 Pt 1):061903. PubMed ID: 18643296 [TBL] [Abstract][Full Text] [Related]
57. Lattice model of linear telechelic polymer melts. I. Inclusion of chain semiflexibility in the lattice cluster theory. Xu WS; Freed KF J Chem Phys; 2015 Jul; 143(2):024901. PubMed ID: 26178121 [TBL] [Abstract][Full Text] [Related]
58. Physics, stability, and dynamics of supply networks. Helbing D; Lämmer S; Seidel T; Seba P; Płatkowski T Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Dec; 70(6 Pt 2):066116. PubMed ID: 15697443 [TBL] [Abstract][Full Text] [Related]
59. Monte Carlo study of multiply crosslinked semiflexible polymer networks. Huisman EM; Storm C; Barkema GT Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Nov; 78(5 Pt 1):051801. PubMed ID: 19113143 [TBL] [Abstract][Full Text] [Related]
60. Role of architecture in the elastic response of semiflexible polymer and fiber networks. Heussinger C; Frey E Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jan; 75(1 Pt 1):011917. PubMed ID: 17358194 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]