These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 25524811)

  • 21. Highly Chemoselective Deoxygenation of N-Heterocyclic
    An JH; Kim KD; Lee JH
    J Org Chem; 2021 Feb; 86(3):2876-2894. PubMed ID: 33435683
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Oxime ester-enabled anti-Markovnikov hydrosilylation of alkenes.
    Shen G; Fu S; Liu B
    Chem Commun (Camb); 2022 Nov; 58(87):12204-12207. PubMed ID: 36239146
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Highly Regio- and Stereoselective Hydrosilylation of Internal Thioalkynes under Mild Conditions.
    Ding S; Song LJ; Wang Y; Zhang X; Chung LW; Wu YD; Sun J
    Angew Chem Int Ed Engl; 2015 May; 54(19):5632-5. PubMed ID: 25784284
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mild Metal-Free Hydrosilylation of Secondary Amides to Amines.
    Huang PQ; Lang QW; Wang YR
    J Org Chem; 2016 May; 81(10):4235-43. PubMed ID: 27100232
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Unprecedented iron-catalyzed ester hydrogenation. Mild, selective, and efficient hydrogenation of trifluoroacetic esters to alcohols catalyzed by an iron pincer complex.
    Zell T; Ben-David Y; Milstein D
    Angew Chem Int Ed Engl; 2014 Apr; 53(18):4685-9. PubMed ID: 24692198
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Zinc-catalyzed chemoselective reduction of esters to alcohols.
    Das S; Möller K; Junge K; Beller M
    Chemistry; 2011 Jun; 17(27):7414-7. PubMed ID: 21590828
    [No Abstract]   [Full Text] [Related]  

  • 27. Facile conversion of alcohols into esters and dihydrogen catalyzed by new ruthenium complexes.
    Zhang J; Leitus G; Ben-David Y; Milstein D
    J Am Chem Soc; 2005 Aug; 127(31):10840-1. PubMed ID: 16076184
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Copper(II)-catalyzed hydrosilylation of ketones using chiral dipyridylphosphane ligands: highly enantioselective synthesis of valuable alcohols.
    Yu F; Zhou JN; Zhang XC; Sui YZ; Wu FF; Xie LJ; Chan AS; Wu J
    Chemistry; 2011 Dec; 17(50):14234-40. PubMed ID: 22065457
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Indium tri(isopropoxide)-catalyzed selective Meerwein-Ponndorf-Verley reduction of aliphatic and aromatic aldehydes.
    Lee J; Ryu T; Park S; Lee PH
    J Org Chem; 2012 May; 77(10):4821-5. PubMed ID: 22563904
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Phosphinite-iminopyridine iron catalysts for chemoselective alkene hydrosilylation.
    Peng D; Zhang Y; Du X; Zhang L; Leng X; Walter MD; Huang Z
    J Am Chem Soc; 2013 Dec; 135(51):19154-66. PubMed ID: 24304467
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Tetrabutylammonium fluoride (TBAF)-catalyzed addition of substituted trialkylsilylalkynes to aldehydes, ketones, and trifluoromethyl ketones.
    Chintareddy VR; Wadhwa K; Verkade JG
    J Org Chem; 2011 Jun; 76(11):4482-8. PubMed ID: 21517057
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Lanthanum(III) catalysts for highly efficient and chemoselective transesterification.
    Hatano M; Ishihara K
    Chem Commun (Camb); 2013 Mar; 49(20):1983-97. PubMed ID: 23325290
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Zinc-Catalyzed Chemoselective Reduction of Nitriles to N-Silylimines through Hydrosilylation: Insights into the Reaction Mechanism.
    Sahoo RK; Nembenna S
    Inorg Chem; 2023 Aug; 62(31):12213-12222. PubMed ID: 37481732
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A new entry of copper-catalyzed four-component reaction: facile access to alpha-aryl beta-hydroxy imidates.
    Yoo EJ; Park SH; Lee SH; Chang S
    Org Lett; 2009 Mar; 11(5):1155-8. PubMed ID: 19209900
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Recyclable heterogeneous copper oxide on alumina catalyzed coupling of phenols and alcohols with aryl halides under ligand-free conditions.
    Swapna K; Murthy SN; Jyothi MT; Nageswar YV
    Org Biomol Chem; 2011 Sep; 9(17):5978-88. PubMed ID: 21695321
    [TBL] [Abstract][Full Text] [Related]  

  • 36. PtCl2/XPhos: a highly efficient and readily available catalyst for the hydrosilylation of propargylic alcohols.
    McLaughlin MG; Cook MJ
    Chem Commun (Camb); 2011 Oct; 47(39):11104-6. PubMed ID: 21909537
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Efficient routes to carbon-silicon bond formation for the synthesis of silicon-containing peptides and azasilaheterocycles.
    Min GK; Hernández D; Skrydstrup T
    Acc Chem Res; 2013 Feb; 46(2):457-70. PubMed ID: 23214467
    [TBL] [Abstract][Full Text] [Related]  

  • 38. TEMPO/HCl/NaNO2 catalyst: a transition-metal-free approach to efficient aerobic oxidation of alcohols to aldehydes and ketones under mild conditions.
    Wang X; Liu R; Jin Y; Liang X
    Chemistry; 2008; 14(9):2679-85. PubMed ID: 18293352
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Chemoselective oxidation of primary alcohols catalysed by Ce(III)-complex intercalated LDH using molecular oxygen at room temperature.
    Singha S; Sahoo M; Parida KM
    Dalton Trans; 2011 Nov; 40(44):11838-44. PubMed ID: 21971562
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Chemo- and stereoselective iron-catalyzed hydrosilylation of ketones.
    Addis D; Shaikh N; Zhou S; Das S; Junge K; Beller M
    Chem Asian J; 2010 Jul; 5(7):1687-91. PubMed ID: 20473981
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.