These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 25524894)

  • 1. Performance assessment of bio-inspired systems: flow sensing MEMS hairs.
    Droogendijk H; Casas J; Steinmann T; Krijnen GJ
    Bioinspir Biomim; 2014 Dec; 10(1):016001. PubMed ID: 25524894
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A biomimetic accelerometer inspired by the cricket's clavate hair.
    Droogendijk H; de Boer MJ; Sanders RG; Krijnen GJ
    J R Soc Interface; 2014 Aug; 11(97):20140438. PubMed ID: 24920115
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Touch at a distance sensing: lateral-line inspired MEMS flow sensors.
    Prakash Kottapalli AG; Asadnia M; Miao J; Triantafyllou M
    Bioinspir Biomim; 2014 Nov; 9(4):046011. PubMed ID: 25378298
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biomechanical Analysis of a Filiform Mechanosensory Hair Socket of Crickets.
    Joshi K; Mian A; Miller J
    J Biomech Eng; 2016 Aug; 138(8):. PubMed ID: 27322099
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Towards a high-resolution flow camera using artificial hair sensor arrays for flow pattern observations.
    Dagamseh AM; Wiegerink RJ; Lammerink TS; Krijnen GJ
    Bioinspir Biomim; 2012 Dec; 7(4):046009. PubMed ID: 22954888
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A bio-inspired real-time capable artificial lateral line system for freestream flow measurements.
    Abels C; Qualtieri A; De Vittorio M; Megill WM; Rizzi F
    Bioinspir Biomim; 2016 Jun; 11(3):035006. PubMed ID: 27257144
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Toward cell-inspired materials that feel: measurements and modeling of mechanotransduction in droplet-based, multi-membrane arrays.
    Tamaddoni N; Sarles SA
    Bioinspir Biomim; 2016 Apr; 11(3):036008. PubMed ID: 27127199
    [TBL] [Abstract][Full Text] [Related]  

  • 8. μ-Biomimetic flow-sensors--introducing light-guiding PDMS structures into MEMS.
    Herzog H; Klein A; Bleckmann H; Holik P; Schmitz S; Siebke G; Tätzner S; Lacher M; Steltenkamp S
    Bioinspir Biomim; 2015 Apr; 10(3):036001. PubMed ID: 25879762
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MEMS sensors for assessing flow-related control of an underwater biomimetic robotic stingray.
    Asadnia M; Kottapalli AG; Haghighi R; Cloitre A; Alvarado PV; Miao J; Triantafyllou M
    Bioinspir Biomim; 2015 May; 10(3):036008. PubMed ID: 25984934
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interaction between arthropod filiform hairs in a fluid environment.
    Cummins B; Gedeon T; Klapper I; Cortez R
    J Theor Biol; 2007 Jul; 247(2):266-80. PubMed ID: 17434184
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bio-inspired flow sensor from printed PEDOT:PSS micro-hairs.
    Devaraj H; Travas-Sejdic J; Sharma R; Aydemir N; Williams D; Haemmerle E; Aw KC
    Bioinspir Biomim; 2015 Feb; 10(1):016017. PubMed ID: 25650357
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hair canopy of cricket sensory system tuned to predator signals.
    Magal C; Dangles O; Caparroy P; Casas J
    J Theor Biol; 2006 Aug; 241(3):459-66. PubMed ID: 16427653
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the shear stress distribution between a functionally graded piezoelectric actuator and an elastic substrate and the reduction of its concentration.
    Yang J; Jin Z; Li J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Nov; 55(11):2360-2. PubMed ID: 19049914
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design of a variable-stiffness flapping mechanism for maximizing the thrust of a bio-inspired underwater robot.
    Park YJ; Huh TM; Park D; Cho KJ
    Bioinspir Biomim; 2014 Sep; 9(3):036002. PubMed ID: 24584214
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Magnetic polymer composite artificial bacterial flagella.
    Peyer KE; Siringil E; Zhang L; Nelson BJ
    Bioinspir Biomim; 2014 Nov; 9(4):046014. PubMed ID: 25405833
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Energy harvesting from the tail beating of a carangiform swimmer using ionic polymer-metal composites.
    Cha Y; Verotti M; Walcott H; Peterson SD; Porfiri M
    Bioinspir Biomim; 2013 Sep; 8(3):036003. PubMed ID: 23793023
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A bio-inspired study on tidal energy extraction with flexible flapping wings.
    Liu W; Xiao Q; Cheng F
    Bioinspir Biomim; 2013 Sep; 8(3):036011. PubMed ID: 23981650
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling arthropod filiform hair motion using the penalty immersed boundary method.
    Heys JJ; Gedeon T; Knott BC; Kim Y
    J Biomech; 2008; 41(5):977-84. PubMed ID: 18255073
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of caudal fin flexibility on the propulsive efficiency of a fish-like swimmer.
    Bergmann M; Iollo A; Mittal R
    Bioinspir Biomim; 2014 Sep; 9(4):046001. PubMed ID: 25252883
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cupula-Inspired Hyaluronic Acid-Based Hydrogel Encapsulation to Form Biomimetic MEMS Flow Sensors.
    Kottapalli AGP; Bora M; Kanhere E; Asadnia M; Miao J; Triantafyllou MS
    Sensors (Basel); 2017 Jul; 17(8):. PubMed ID: 28788059
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.