BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 25524990)

  • 1. The importance of ultraviolet and near-infrared sensitivity for visual discrimination in two species of lacertid lizards.
    Martin M; Le Galliard JF; Meylan S; Loew ER
    J Exp Biol; 2015 Feb; 218(Pt 3):458-65. PubMed ID: 25524990
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultraviolet vision in lacertid lizards: evidence from retinal structure, eye transmittance, SWS1 visual pigment genes and behaviour.
    Pérez i de Lanuza G; Font E
    J Exp Biol; 2014 Aug; 217(Pt 16):2899-909. PubMed ID: 24902749
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spectral sensitivity of cone photoreceptors and opsin expression in two colour-divergent lineages of the lizard Ctenophorus decresii.
    Yewers MS; McLean CA; Moussalli A; Stuart-Fox D; Bennett AT; Knott B
    J Exp Biol; 2015 May; 218(Pt 10):1556-63. PubMed ID: 25827838
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High sensitivity to short wavelengths in a lizard and implications for understanding the evolution of visual systems in lizards.
    Fleishman LJ; Loew ER; Whiting MJ
    Proc Biol Sci; 2011 Oct; 278(1720):2891-9. PubMed ID: 21389031
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The cone photoreceptors and visual pigments of chameleons.
    Bowmaker JK; Loew ER; Ott M
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2005 Oct; 191(10):925-32. PubMed ID: 16025336
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Visual modelling suggests a weak relationship between the evolution of ultraviolet vision and plumage coloration in birds.
    Lind O; Delhey K
    J Evol Biol; 2015 Mar; 28(3):715-22. PubMed ID: 25664902
    [TBL] [Abstract][Full Text] [Related]  

  • 7. S cones: Evolution, retinal distribution, development, and spectral sensitivity.
    Hunt DM; Peichl L
    Vis Neurosci; 2014 Mar; 31(2):115-38. PubMed ID: 23895771
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of cone pigment coexpression on spectral sensitivity and color vision in the mouse.
    Jacobs GH; Williams GA; Fenwick JA
    Vision Res; 2004; 44(14):1615-22. PubMed ID: 15135998
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Visual ecology of the Australian lungfish (Neoceratodus forsteri).
    Hart NS; Bailes HJ; Vorobyev M; Marshall NJ; Collin SP
    BMC Ecol; 2008 Dec; 8():21. PubMed ID: 19091135
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Visual pigments and oil droplets in diurnal lizards: a comparative study of Caribbean anoles.
    Loew ER; Fleishman LJ; Foster RG; Provencio I
    J Exp Biol; 2002 Apr; 205(Pt 7):927-38. PubMed ID: 11916989
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modelling oil droplet absorption spectra and spectral sensitivities of bird cone photoreceptors.
    Hart NS; Vorobyev M
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2005 Apr; 191(4):381-92. PubMed ID: 15711964
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Through the eye of a lizard: hue discrimination in a lizard with ventral polymorphic coloration.
    Pérez I de Lanuza G; Ábalos J; Bartolomé A; Font E
    J Exp Biol; 2018 Mar; 221(Pt 5):. PubMed ID: 29367273
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Do American goldfinches see their world like passive prey foragers? A study on visual fields, retinal topography, and sensitivity of photoreceptors.
    Baumhardt PE; Moore BA; Doppler M; Fernández-Juricic E
    Brain Behav Evol; 2014; 83(3):181-98. PubMed ID: 24663005
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Patterns of cranial ontogeny in lacertid lizards: morphological and allometric disparity.
    Urošević A; Ljubisavljević K; Ivanović A
    J Evol Biol; 2013 Feb; 26(2):399-415. PubMed ID: 23278889
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photoreceptor layer of salmonid fishes: transformation and loss of single cones in juvenile fish.
    Cheng CL; Flamarique IN; Hárosi FI; Rickers-Haunerland J; Haunerland NH
    J Comp Neurol; 2006 Mar; 495(2):213-35. PubMed ID: 16435286
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cone photoreceptor oil droplet pigmentation is affected by ambient light intensity.
    Hart NS; Lisney TJ; Collin SP
    J Exp Biol; 2006 Dec; 209(Pt 23):4776-87. PubMed ID: 17114410
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oblique color vision in an open-habitat bird: spectral sensitivity, photoreceptor distribution and behavioral implications.
    Moore BA; Baumhardt P; Doppler M; Randolet J; Blackwell BF; DeVault TL; Loew ER; Fernández-Juricic E
    J Exp Biol; 2012 Oct; 215(Pt 19):3442-52. PubMed ID: 22956248
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Visual pigments and spectral sensitivity of the diurnal gecko Gonatodes albogularis.
    Ellingson JM; Fleishman LJ; Loew ER
    J Comp Physiol A; 1995 Nov; 177(5):559-67. PubMed ID: 7473305
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The roles of receptor noise and cone oil droplets in the photopic spectral sensitivity of the budgerigar, Melopsittacus undulatus.
    Goldsmith TH; Butler BK
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2003 Feb; 189(2):135-42. PubMed ID: 12607042
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adaptive plasticity during the development of colour vision.
    Wagner HJ; Kröger RH
    Prog Retin Eye Res; 2005 Jul; 24(4):521-36. PubMed ID: 15845347
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.