BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

4205 related articles for article (PubMed ID: 25525159)

  • 21. Confirmed pathogenic effect of a splice site variation in the MLH1 gene causing Lynch syndrome.
    Ruiz JL; Alvarez-Cubero MJ; Rosado FF; Espín EM; Bernal CE
    Int J Colorectal Dis; 2014 Aug; 29(8):1019-20. PubMed ID: 24811117
    [No Abstract]   [Full Text] [Related]  

  • 22. MutPred Splice: machine learning-based prediction of exonic variants that disrupt splicing.
    Mort M; Sterne-Weiler T; Li B; Ball EV; Cooper DN; Radivojac P; Sanford JR; Mooney SD
    Genome Biol; 2014 Jan; 15(1):R19. PubMed ID: 24451234
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mechanism and modeling of human disease-associated near-exon intronic variants that perturb RNA splicing.
    Chiang HL; Chen YT; Su JY; Lin HN; Yu CA; Hung YJ; Wang YL; Huang YT; Lin CL
    Nat Struct Mol Biol; 2022 Nov; 29(11):1043-1055. PubMed ID: 36303034
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Evaluation of both exonic and intronic variants for effects on RNA splicing allows for accurate assessment of the effectiveness of precision therapies.
    Joynt AT; Evans TA; Pellicore MJ; Davis-Marcisak EF; Aksit MA; Eastman AC; Patel SU; Paul KC; Osorio DL; Bowling AD; Cotton CU; Raraigh KS; West NE; Merlo CA; Cutting GR; Sharma N
    PLoS Genet; 2020 Oct; 16(10):e1009100. PubMed ID: 33085659
    [TBL] [Abstract][Full Text] [Related]  

  • 25. An American founder mutation in MLH1.
    Tomsic J; Liyanarachchi S; Hampel H; Morak M; Thomas BC; Raymond VM; Chittenden A; Schackert HK; Gruber SB; Syngal S; Viel A; Holinski-Feder E; Thibodeau SN; de la Chapelle A
    Int J Cancer; 2012 May; 130(9):2088-95. PubMed ID: 21671475
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A 'nonsense' mutation leads to aberrant splicing of hMLH1 in a German hereditary non-polyposis colorectal cancer family.
    Baehring J; Sutter C; Kadmon M; Doeberitz MV; Gebert J
    Fam Cancer; 2006; 5(2):195-9. PubMed ID: 16736291
    [TBL] [Abstract][Full Text] [Related]  

  • 27. MLH1 intronic variants mapping to + 5 position of splice donor sites lead to deleterious effects on RNA splicing.
    Piñero TA; Soukarieh O; Rolain M; Alvarez K; López-Köstner F; Torrezan GT; Carraro DM; De Oliveira Nascimento IL; Bomfim TF; Machado-Lopes TMB; Freitas JC; Toralles MB; Sandes KA; Rossi BM; Junior SA; Meira J; Dominguez-Valentin M; Møller P; Vaccaro CA; Martins A; Pavicic WH
    Fam Cancer; 2020 Oct; 19(4):323-336. PubMed ID: 32363481
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The deep intronic c.903+469T>C mutation in the MTRR gene creates an SF2/ASF binding exonic splicing enhancer, which leads to pseudoexon activation and causes the cblE type of homocystinuria.
    Homolova K; Zavadakova P; Doktor TK; Schroeder LD; Kozich V; Andresen BS
    Hum Mutat; 2010 Apr; 31(4):437-44. PubMed ID: 20120036
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Disruption of an SF2/ASF-dependent exonic splicing enhancer in SMN2 causes spinal muscular atrophy in the absence of SMN1.
    Cartegni L; Krainer AR
    Nat Genet; 2002 Apr; 30(4):377-84. PubMed ID: 11925564
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Intronic PAH gene mutations cause a splicing defect by a novel mechanism involving U1snRNP binding downstream of the 5' splice site.
    Martínez-Pizarro A; Dembic M; Pérez B; Andresen BS; Desviat LR
    PLoS Genet; 2018 Apr; 14(4):e1007360. PubMed ID: 29684050
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Identification and Rescue of Splice Defects Caused by Two Neighboring Deep-Intronic ABCA4 Mutations Underlying Stargardt Disease.
    Albert S; Garanto A; Sangermano R; Khan M; Bax NM; Hoyng CB; Zernant J; Lee W; Allikmets R; Collin RWJ; Cremers FPM
    Am J Hum Genet; 2018 Apr; 102(4):517-527. PubMed ID: 29526278
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Familial adenomatous polyposis: aberrant splicing due to missense or silent mutations in the APC gene.
    Aretz S; Uhlhaas S; Sun Y; Pagenstecher C; Mangold E; Caspari R; Möslein G; Schulmann K; Propping P; Friedl W
    Hum Mutat; 2004 Nov; 24(5):370-80. PubMed ID: 15459959
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Pathogenic variants that alter protein code often disrupt splicing.
    Soemedi R; Cygan KJ; Rhine CL; Wang J; Bulacan C; Yang J; Bayrak-Toydemir P; McDonald J; Fairbrother WG
    Nat Genet; 2017 Jun; 49(6):848-855. PubMed ID: 28416821
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Hotspot exons are common targets of splicing perturbations.
    Glidden DT; Buerer JL; Saueressig CF; Fairbrother WG
    Nat Commun; 2021 May; 12(1):2756. PubMed ID: 33980843
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Unpredicted Aberrant Splicing Products Identified in Postmortem Sudden Cardiac Death Samples.
    Coll M; Fernandez-Falgueras A; Iglesias A; Del Olmo B; Nogue-Navarro L; Simon A; Perez Serra A; Puigmule M; Lopez L; Pico F; Corona M; Vallverdu-Prats M; Tiron C; Campuzano O; Castella J; Brugada R; Alcalde M
    Int J Mol Sci; 2022 Oct; 23(20):. PubMed ID: 36293497
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Gene symbol: hMLH1. Disease: Hereditary nonpolyposis colorectal cancer.
    Sun MH; Cai Q; Fu G; Ren S; Mo S; Xu Y; Ding C; Zhang T; Zhu X; Xu X; Min D; Cai S; Luo D; Shi Y; Shi D
    Hum Genet; 2004 Mar; 114(4):411. PubMed ID: 15046112
    [No Abstract]   [Full Text] [Related]  

  • 37. Gene symbol: hMLH1. Disease: Hereditary nonpolyposis colorectal cancer.
    Sun MH; Cai Q; Fu G; Ren S; Mo S; Xu Y; Ding C; Zhang T; Zhu X; Xu X; Min D; Cai S; Luo D; Shi Y; Shi D
    Hum Genet; 2004 Mar; 114(4):411. PubMed ID: 15046110
    [No Abstract]   [Full Text] [Related]  

  • 38. Novel splicing associations of hereditary colon cancer related DNA mismatch repair gene mutations.
    Renkonen E; Lohi H; Järvinen HJ; Mecklin JP; Peltomäki P
    J Med Genet; 2004 Jul; 41(7):e95. PubMed ID: 15235038
    [No Abstract]   [Full Text] [Related]  

  • 39. Analysis of 30 putative BRCA1 splicing mutations in hereditary breast and ovarian cancer families identifies exonic splice site mutations that escape in silico prediction.
    Wappenschmidt B; Becker AA; Hauke J; Weber U; Engert S; Köhler J; Kast K; Arnold N; Rhiem K; Hahnen E; Meindl A; Schmutzler RK
    PLoS One; 2012; 7(12):e50800. PubMed ID: 23239986
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A sequence-based, deep learning model accurately predicts RNA splicing branchpoints.
    Paggi JM; Bejerano G
    RNA; 2018 Dec; 24(12):1647-1658. PubMed ID: 30224349
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 211.