These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 25525213)

  • 1. Altering blood flow does not reveal differences between nitrogen and helium kinetics in brain or in skeletal miracle in sheep.
    Doolette DJ; Upton RN; Grant C
    J Appl Physiol (1985); 2015 Mar; 118(5):586-94. PubMed ID: 25525213
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Countercurrent compartmental models describe hind limb skeletal muscle helium kinetics at resting and low blood flows in sheep.
    Doolette DJ; Upton RN; Grant C
    Acta Physiol Scand; 2005 Oct; 185(2):109-21. PubMed ID: 16168005
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Perfusion-diffusion compartmental models describe cerebral helium kinetics at high and low cerebral blood flows in sheep.
    Doolette DJ; Upton RN; Grant C
    J Physiol; 2005 Mar; 563(Pt 2):529-39. PubMed ID: 15649976
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Diffusion-limited tissue equilibration and arteriovenous diffusion shunt describe skeletal muscle nitrous oxide kinetics at high and low blood flows in sheep.
    Doolette DJ; Upton RN; Zheng D
    Acta Physiol Scand; 2001 Jul; 172(3):167-77. PubMed ID: 11472303
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biophysical basis for inner ear decompression sickness.
    Doolette DJ; Mitchell SJ
    J Appl Physiol (1985); 2003 Jun; 94(6):2145-50. PubMed ID: 12562679
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The physiological kinetics of nitrogen and the prevention of decompression sickness.
    Doolette DJ; Mitchell SJ
    Clin Pharmacokinet; 2001 Jan; 40(1):1-14. PubMed ID: 11236806
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recreational technical diving part 2: decompression from deep technical dives.
    Doolette DJ; Mitchell SJ
    Diving Hyperb Med; 2013 Jun; 43(2):96-104. PubMed ID: 23813463
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Diving decompression models and bubble metrics: modern computer syntheses.
    Wienke BR
    Comput Biol Med; 2009 Apr; 39(4):309-31. PubMed ID: 19251254
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Probabilistic pharmacokinetic models of decompression sickness in humans: Part 2, coupled perfusion-diffusion models.
    Murphy FG; Hada EA; Doolette DJ; Howle LE
    Comput Biol Med; 2018 Jan; 92():90-97. PubMed ID: 29161578
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Breathing a mixture of inert gases: disproportionate diffusion into decompression bubbles.
    Van Liew HD; Burkard ME
    Undersea Hyperb Med; 1996 Mar; 23(1):11-7. PubMed ID: 8653060
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of heliox, oxygen and air breathing on helium bubbles after heliox diving.
    Hyldegaard O; Jensen T
    Undersea Hyperb Med; 2007; 34(2):107-22. PubMed ID: 17520862
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of isobaric breathing gas shifts from air to heliox mixtures on resolution of air bubbles in lipid and aqueous tissues of recompressed rats.
    Hyldegaard O; Kerem D; Melamed Y
    Eur J Appl Physiol; 2011 Sep; 111(9):2183-93. PubMed ID: 21318313
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hyperbaric conditions.
    Doolette DJ; Mitchell SJ
    Compr Physiol; 2011 Jan; 1(1):163-201. PubMed ID: 23737169
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bubbles, microparticles, and neutrophil activation: changes with exercise level and breathing gas during open-water SCUBA diving.
    Thom SR; Milovanova TN; Bogush M; Yang M; Bhopale VM; Pollock NW; Ljubkovic M; Denoble P; Madden D; Lozo M; Dujic Z
    J Appl Physiol (1985); 2013 May; 114(10):1396-405. PubMed ID: 23493363
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Theoretical analysis of recompression-based therapies of decompression illness].
    Nikolaev VP; Sokolov GM; Komarevtsev VN
    Aviakosm Ekolog Med; 2011; 45(4):47-54. PubMed ID: 21970044
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Decompression models: review, relevance and validation capabilities.
    Hugon J
    Undersea Hyperb Med; 2014; 41(6):531-56. PubMed ID: 25562945
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pathophysiology of inner ear decompression sickness: potential role of the persistent foramen ovale.
    Mitchell SJ; Doolette DJ
    Diving Hyperb Med; 2015 Jun; 45(2):105-10. PubMed ID: 26165533
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of oxygen and heliox breathing on air bubbles in adipose tissue during 25-kPa altitude exposures.
    Randsøe T; Kvist TM; Hyldegaard O
    J Appl Physiol (1985); 2008 Nov; 105(5):1492-7. PubMed ID: 18756005
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selective vulnerability of the inner ear to decompression sickness in divers with right-to-left shunt: the role of tissue gas supersaturation.
    Mitchell SJ; Doolette DJ
    J Appl Physiol (1985); 2009 Jan; 106(1):298-301. PubMed ID: 18801958
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling the detachment and transport of bubbles from nucleation sites in small vessels.
    Chappell MA; Uzel S; Payne SJ
    IEEE Trans Biomed Eng; 2007 Nov; 54(11):2106-8. PubMed ID: 18018706
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.