BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 2552526)

  • 1. [Experimental research on the quantitative computed tomographic prediction of the compressive strength of the thoracolumbar vertebrae].
    Biggemann M; Hilweg D; Brinckmann P
    Rofo; 1989 Sep; 151(3):322-5. PubMed ID: 2552526
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Axial compressive strength of thoraco-lumbar vertebrae--an experimental biomechanical study].
    Konermann W; Stubbe F; Link T; Meier N
    Z Orthop Ihre Grenzgeb; 1999; 137(3):223-31. PubMed ID: 10441827
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Risk of vertebral insufficiency fractures in relation to compressive strength predicted by quantitative computed tomography.
    Biggemann M; Hilweg D; Seidel S; Horst M; Brinckmann P
    Eur J Radiol; 1991; 13(1):6-10. PubMed ID: 1832380
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction of the compressive strength of human lumbar vertebrae.
    Brinckmann P; Biggemann M; Hilweg D
    Spine (Phila Pa 1976); 1989 Jun; 14(6):606-10. PubMed ID: 2749376
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of the compressive strength of human lumbar vertebrae.
    Brinckmann P; Biggemann M; Hilweg D
    Clin Biomech (Bristol, Avon); 1989; 4 Suppl 2():iii-27. PubMed ID: 23906213
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanical strength of the thoracolumbar spine in the elderly: prediction from in situ dual-energy X-ray absorptiometry, quantitative computed tomography (QCT), upper and lower limb peripheral QCT, and quantitative ultrasound.
    Lochmüller EM; Bürklein D; Kuhn V; Glaser C; Müller R; Glüer CC; Eckstein F
    Bone; 2002 Jul; 31(1):77-84. PubMed ID: 12110416
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A nonlinear finite element model validation study based on a novel experimental technique for inducing anterior wedge-shape fractures in human vertebral bodies in vitro.
    Dall'Ara E; Schmidt R; Pahr D; Varga P; Chevalier Y; Patsch J; Kainberger F; Zysset P
    J Biomech; 2010 Aug; 43(12):2374-80. PubMed ID: 20462582
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of the compressive strength of vertebral bodies of the lumbar spine by quantitative computed tomography.
    Biggemann M; Hilweg D; Brinckmann P
    Skeletal Radiol; 1988; 17(4):264-9. PubMed ID: 3212488
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Noninvasive prediction of vertebral body compressive strength using nonlinear finite element method and an image based technique.
    Zeinali A; Hashemi B; Akhlaghpoor S
    Phys Med; 2010 Apr; 26(2):88-97. PubMed ID: 19781969
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [The texture-analysis of high-resolution computed tomograms as an additional procedure in osteoporosis diagnosis: in-vitro studies on vertebral segments].
    Waldt S; Meier N; Renger B; Lenzen H; Fiebich M; Rummeny EJ; Link TM
    Rofo; 1999 Aug; 171(2):136-42. PubMed ID: 10506888
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vertebral body trabecular density at the thoracolumbar junction using quantitative computed tomography. A post-mortem study.
    Singer KP; Breidahl PD
    Acta Radiol; 1990 Jan; 31(1):37-40. PubMed ID: 2340223
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Determinants and heterogeneity of mechanical competence throughout the thoracolumbar spine of elderly women and men.
    Eckstein F; Fischbeck M; Kuhn V; Link TM; Priemel M; Lochmüller EM
    Bone; 2004 Aug; 35(2):364-74. PubMed ID: 15268885
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of thoracic and lumbar vertebral body compressive strength: correlations with bone mineral density and vertebral region.
    Singer K; Edmondston S; Day R; Breidahl P; Price R
    Bone; 1995 Aug; 17(2):167-74. PubMed ID: 8554926
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On prediction of the strength levels and failure patterns of human vertebrae using quantitative computed tomography (QCT)-based finite element method.
    Mirzaei M; Zeinali A; Razmjoo A; Nazemi M
    J Biomech; 2009 Aug; 42(11):1584-91. PubMed ID: 19457486
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The relationship between bone mineral density, vertebral body shape and spinal curvature in the elderly thoracolumbar spine: an in vitro study.
    Edmondston SJ; Singer KP; Price RI; Day RE; Breidahl PD
    Br J Radiol; 1994 Oct; 67(802):969-75. PubMed ID: 8000841
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Correlation of mechanical properties of vertebral trabecular bone with equivalent mineral density as measured by computed tomography.
    Lang SM; Moyle DD; Berg EW; Detorie N; Gilpin AT; Pappas NJ; Reynolds JC; Tkacik M; Waldron RL
    J Bone Joint Surg Am; 1988 Dec; 70(10):1531-8. PubMed ID: 3198678
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An assessment of radiological criteria used in the study of spinal osteoporosis.
    Doyle FH; Gutteridge DH; Joplin GF; Fraser R
    Br J Radiol; 1967 Apr; 40(472):241-50. PubMed ID: 6020826
    [No Abstract]   [Full Text] [Related]  

  • 18. Trabecular mineral contents of lumbar vertebra in patients with osteoporosis.
    Suzuki S; Okumura H; Yamamuro T
    Nihon Seikeigeka Gakkai Zasshi; 1990 Jan; 64(1):17-26. PubMed ID: 2319191
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of single- and dual-energy quantitative computed tomography for therapy control under antiosteoporotic treatment.
    Pfeifer T; Ulrich U; Knöferl MW
    In Vivo; 1994; 8(3):327-31. PubMed ID: 7803713
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lumbar and thoracic spine pain in the athlete: radiographic evaluation.
    Cacayorin ED; Hochhauser L; Petro GR
    Clin Sports Med; 1987 Oct; 6(4):767-83. PubMed ID: 3333926
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.