BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 25525290)

  • 1. UV resonance Raman study of TrpZip2 and related peptides: π-π interactions of tryptophan.
    Schlamadinger DE; Leigh BS; Kim JE
    J Raman Spectrosc; 2012 Oct; 43(10):1459-1464. PubMed ID: 25525290
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrogen bonding and solvent polarity markers in the uv resonance raman spectrum of tryptophan: application to membrane proteins.
    Schlamadinger DE; Gable JE; Kim JE
    J Phys Chem B; 2009 Nov; 113(44):14769-78. PubMed ID: 19817473
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tryptophan-lipid interactions in membrane protein folding probed by ultraviolet resonance Raman and fluorescence spectroscopy.
    Sanchez KM; Kang G; Wu B; Kim JE
    Biophys J; 2011 May; 100(9):2121-30. PubMed ID: 21539779
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of measured and calculated Raman spectra of indole, 3-methylindole, and tryptophan on the basis of observed and predicted isotope shifts.
    Dieng SD; Schelvis JP
    J Phys Chem A; 2010 Oct; 114(40):10897-905. PubMed ID: 20860352
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Geometry and efficacy of cross-strand Trp/Trp, Trp/Tyr, and Tyr/Tyr aromatic interaction in a beta-hairpin peptide.
    Wu L; McElheny D; Takekiyo T; Keiderling TA
    Biochemistry; 2010 Jun; 49(22):4705-14. PubMed ID: 20423111
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of tryptophan-tryptophan interactions in Trpzip beta-hairpin formation, structure, and stability.
    Wu L; McElheny D; Huang R; Keiderling TA
    Biochemistry; 2009 Nov; 48(43):10362-71. PubMed ID: 19788311
    [TBL] [Abstract][Full Text] [Related]  

  • 7. UV resonance Raman study of cation-π interactions in an indole crown ether.
    Schlamadinger DE; Daschbach MM; Gokel GW; Kim JE
    J Raman Spectrosc; 2011 Apr; 42(4):633-638. PubMed ID: 25635155
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluating force field accuracy with long-time simulations of a β-hairpin tryptophan zipper peptide.
    Hayre NR; Singh RR; Cox DL
    J Chem Phys; 2011 Jan; 134(3):035103. PubMed ID: 21261392
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cross-strand coupling and site-specific unfolding thermodynamics of a trpzip beta-hairpin peptide using 13C isotopic labeling and IR spectroscopy.
    Huang R; Wu L; McElheny D; Bour P; Roy A; Keiderling TA
    J Phys Chem B; 2009 Apr; 113(16):5661-74. PubMed ID: 19326892
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tryptophan side chain electrostatic interactions determine edge-to-face vs parallel-displaced tryptophan side chain geometries in the designed beta-hairpin "trpzip2".
    Guvench O; Brooks CL
    J Am Chem Soc; 2005 Apr; 127(13):4668-74. PubMed ID: 15796532
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tunable CH/π Interactions within a Tryptophan Zipper Motif to Stabilize the Fold of Long β-Hairpin Peptides.
    Richaud AD; Mandal S; Das A; Roche SP
    ACS Chem Biol; 2023 Dec; 18(12):2555-2563. PubMed ID: 37976523
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Secondary structure determination in proteins from deep (192-223-nm) ultraviolet Raman spectroscopy.
    Copeland RA; Spiro TG
    Biochemistry; 1987 Apr; 26(8):2134-9. PubMed ID: 3620443
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure and interactions of the single-stranded DNA genome of filamentous virus fd: investigation by ultraviolet resonance raman spectroscopy.
    Wen ZQ; Overman SA; Thomas GJ
    Biochemistry; 1997 Jun; 36(25):7810-20. PubMed ID: 9201924
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conformational stabilization of a β-hairpin through a triazole-tryptophan interaction.
    Diana D; Di Salvo C; Celentano V; De Rosa L; Romanelli A; Fattorusso R; D'Andrea LD
    Org Biomol Chem; 2018 Jan; 16(5):787-795. PubMed ID: 29319097
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Site-specific relaxation kinetics of a tryptophan zipper hairpin peptide using temperature-jump IR spectroscopy and isotopic labeling.
    Hauser K; Krejtschi C; Huang R; Wu L; Keiderling TA
    J Am Chem Soc; 2008 Mar; 130(10):2984-92. PubMed ID: 18278908
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultraviolet-resonance raman spectroscopy of the filamentous virus Pf3: interactions of Trp 38 specific to the assembled virion subunit.
    Wen ZQ; Thomas GJ
    Biochemistry; 2000 Jan; 39(1):146-52. PubMed ID: 10625489
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New structural insights from Raman spectroscopy of proteins and their assemblies.
    Thomas GJ
    Biopolymers; 2002; 67(4-5):214-25. PubMed ID: 12012434
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design of highly stabilized beta-hairpin peptides through cation-pi interactions of lysine and n-methyllysine with an aromatic pocket.
    Riemen AJ; Waters ML
    Biochemistry; 2009 Feb; 48(7):1525-31. PubMed ID: 19191524
    [TBL] [Abstract][Full Text] [Related]  

  • 19. UV resonance raman investigation of electronic transitions in alpha-helical and polyproline II-like conformations.
    Sharma B; Bykov SV; Asher SA
    J Phys Chem B; 2008 Sep; 112(37):11762-9. PubMed ID: 18712913
    [TBL] [Abstract][Full Text] [Related]  

  • 20. UV Resonance Raman Spectroscopy as a Tool to Probe Membrane Protein Structure and Dynamics.
    Asamoto DK; Kim JE
    Methods Mol Biol; 2019; 2003():327-349. PubMed ID: 31218624
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.