These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 25525397)

  • 1. Non-invasive imaging of microcirculation: a technology review.
    Eriksson S; Nilsson J; Sturesson C
    Med Devices (Auckl); 2014; 7():445-52. PubMed ID: 25525397
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Non-invasive techniques to access
    Bottino DA; Bouskela E
    Front Med (Lausanne); 2022; 9():1099107. PubMed ID: 36687444
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sidestream dark field imaging: the evolution of real-time visualization of cutaneous microcirculation and its potential application in dermatology.
    Treu CM; Lupi O; Bottino DA; Bouskela E
    Arch Dermatol Res; 2011 Mar; 303(2):69-78. PubMed ID: 20972572
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recent advances in bedside microcirculation assessment in critically ill patients.
    Tafner PFDA; Chen FK; Rabello R; Corrêa TD; Chaves RCF; Serpa A
    Rev Bras Ter Intensiva; 2017; 29(2):238-247. PubMed ID: 28977264
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Laser speckle contrast imaging for assessment of liver microcirculation.
    Sturesson C; Milstein DM; Post IC; Maas AM; van Gulik TM
    Microvasc Res; 2013 May; 87():34-40. PubMed ID: 23403398
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative laser speckle flowmetry of the in vivo microcirculation using sidestream dark field microscopy.
    Nadort A; Woolthuis RG; van Leeuwen TG; Faber DJ
    Biomed Opt Express; 2013; 4(11):2347-61. PubMed ID: 24298399
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessment of the microcirculatory flow in patients in the intensive care unit.
    De Backer D; Dubois MJ
    Curr Opin Crit Care; 2001 Jun; 7(3):200-3. PubMed ID: 11436528
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microvascular perfusion in cardiac arrest: a review of microcirculatory imaging studies.
    Krupičková P; Mormanová Z; Bouček T; Belza T; Šmalcová J; Bělohlávek J
    Perfusion; 2018 Jan; 33(1):8-15. PubMed ID: 28812428
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tissue perfusion measurements: multiple-exposure laser speckle analysis generates laser Doppler-like spectra.
    Thompson OB; Andrews MK
    J Biomed Opt; 2010; 15(2):027015. PubMed ID: 20459289
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cutaneous microcirculation in preterm neonates: comparison between sidestream dark field (SDF) and incident dark field (IDF) imaging.
    van Elteren HA; Ince C; Tibboel D; Reiss IK; de Jonge RC
    J Clin Monit Comput; 2015 Oct; 29(5):543-8. PubMed ID: 26021740
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Noninvasive in vivo assessment of the skeletal muscle and small intestine serous surface microcirculation in rat: sidestream dark-field (SDF) imaging.
    Turek Z; Černý V; Pařízková R
    Physiol Res; 2008; 57(3):365-371. PubMed ID: 17465701
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intraoperative Imaging Techniques to Visualize Hepatic (Micro)Perfusion: An Overview.
    Uz Z; Shen L; Milstein DMJ; van Lienden KP; Swijnenburg RJ; Ince C; van Gulik TM
    Eur Surg Res; 2020; 61(1):2-13. PubMed ID: 32659780
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impact of experimental conditions on noncontact laser recordings in microvascular studies.
    Mahé G; Durand S; Humeau-Heurtier A; Leftheriotis G; Abraham P
    Microcirculation; 2012 Nov; 19(8):669-75. PubMed ID: 22708898
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sidestream dark field imaging of the serosal microcirculation during gastrointestinal surgery.
    de Bruin AF; Kornmann VN; van der Sloot K; van Vugt JL; Gosselink MP; Smits A; Van Ramshorst B; Boerma EC; Noordzij PG; Boerma D; van Iterson M
    Colorectal Dis; 2016 Mar; 18(3):O103-10. PubMed ID: 26725570
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel Optical Techniques for Imaging Microcirculation in the Diabetic Foot.
    Mennes OA; van Netten JJ; Slart RHJA; Steenbergen W
    Curr Pharm Des; 2018; 24(12):1304-1316. PubMed ID: 29508676
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vessel packaging effect in laser speckle contrast imaging and laser Doppler imaging.
    Fredriksson I; Larsson M
    J Biomed Opt; 2017 Oct; 22(10):1-7. PubMed ID: 29019179
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessment of microcirculation in the diabetic foot with laser speckle contrast imaging.
    Mennes OA; van Netten JJ; van Baal JG; Steenbergen W
    Physiol Meas; 2019 Jul; 40(6):065002. PubMed ID: 31071696
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Visualization of perfusion changes with laser speckle contrast imaging using the method of motion history image.
    Ansari MZ; Humeau-Heurtier A; Offenhauser N; Dreier JP; Nirala AK
    Microvasc Res; 2016 Sep; 107():106-9. PubMed ID: 27321386
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Validation of Dynamic optical coherence tomography for non-invasive, in vivo microcirculation imaging of the skin.
    Themstrup L; Welzel J; Ciardo S; Kaestle R; Ulrich M; Holmes J; Whitehead R; Sattler EC; Kindermann N; Pellacani G; Jemec GB
    Microvasc Res; 2016 Sep; 107():97-105. PubMed ID: 27235002
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Novel Approach to Overcome Movement Artifact When Using a Laser Speckle Contrast Imaging System for Alternating Speeds of Blood Microcirculation.
    Bahadori S; Immins T; Wainwright TW
    J Vis Exp; 2017 Aug; (126):. PubMed ID: 28892025
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.