These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 25525643)

  • 41. High electrocatalytic and wettable nitrogen-doped microwave-exfoliated graphene nanosheets as counter electrode for dye-sensitized solar cells.
    Zhai P; Wei TC; Chang YH; Huang YT; Yeh WT; Su H; Feng SP
    Small; 2014 Aug; 10(16):3347-53. PubMed ID: 24833284
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Direct tri-constituent co-assembly of highly ordered mesoporous carbon counter electrode for dye-sensitized solar cells.
    Peng T; Sun W; Sun X; Huang N; Liu Y; Bu C; Guo S; Zhao XZ
    Nanoscale; 2013 Jan; 5(1):337-41. PubMed ID: 23165970
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Graphene-NiO nanohybrid prepared by dry plasma reduction as a low-cost counter electrode material for dye-sensitized solar cells.
    Dao VD; Larina LL; Jung KD; Lee JK; Choi HS
    Nanoscale; 2014 Jan; 6(1):477-82. PubMed ID: 24217311
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Effect of crystallization of Cu₂ZnSnSxSe₄-x counter electrode on the performance for efficient dye-sensitized solar cells.
    Chen H; Kou D; Chang Z; Zhou W; Zhou Z; Wu S
    ACS Appl Mater Interfaces; 2014 Dec; 6(23):20664-9. PubMed ID: 25382857
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Development of Graphene Nano-Platelet Based Counter Electrodes for Solar Cells.
    Ahmad I; McCarthy JE; Baranov A; Gun'ko YK
    Materials (Basel); 2015 Sep; 8(9):5953-5973. PubMed ID: 28793544
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Carbon nanotube aerogel-CoS
    Liu T; Mai X; Chen H; Ren J; Liu Z; Li Y; Gao L; Wang N; Zhang J; He H; Guo Z
    Nanoscale; 2018 Mar; 10(9):4194-4201. PubMed ID: 29446418
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Low-cost counter electrodes from CoPt alloys for efficient dye-sensitized solar cells.
    He B; Meng X; Tang Q
    ACS Appl Mater Interfaces; 2014 Apr; 6(7):4812-8. PubMed ID: 24611765
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A 3D architecture composite of porous vanadium nitride nanoribbons and reduced graphene oxide as a high-efficiency counter electrode for dye-sensitized solar cells.
    Wang G; Hou S; Yan C; Zhang W
    RSC Adv; 2018 Jan; 8(2):1083-1088. PubMed ID: 35538975
    [TBL] [Abstract][Full Text] [Related]  

  • 49. In-situ electrochemically deposited polypyrrole nanoparticles incorporated reduced graphene oxide as an efficient counter electrode for platinum-free dye-sensitized solar cells.
    Lim SP; Pandikumar A; Lim YS; Huang NM; Lim HN
    Sci Rep; 2014 Jun; 4():5305. PubMed ID: 24930387
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Facile water-based spray pyrolysis of earth-abundant Cu2FeSnS4 thin films as an efficient counter electrode in dye-sensitized solar cells.
    Prabhakar RR; Huu Loc N; Kumar MH; Boix PP; Juan S; John RA; Batabyal SK; Wong LH
    ACS Appl Mater Interfaces; 2014 Oct; 6(20):17661-7. PubMed ID: 25255739
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Graphene quantum-dot-doped polypyrrole counter electrode for high-performance dye-sensitized solar cells.
    Chen L; Guo CX; Zhang Q; Lei Y; Xie J; Ee S; Guai G; Song Q; Li CM
    ACS Appl Mater Interfaces; 2013 Mar; 5(6):2047-52. PubMed ID: 23448248
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Three-dimensional graphene networks and RGO-based counter electrode for DSSCs.
    Tang B; Yu H; Huang W; Sun Y; Li X; Li S; Ma T
    RSC Adv; 2019 May; 9(28):15678-15685. PubMed ID: 35521385
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Novel gamma-irradiated chitosan-doped reduced graphene-CuInS
    Areerob Y; Hamontree C; Sricharoen P; Limchoowong N; Laksee S; Oh WC; Pattarith K
    RSC Adv; 2022 May; 12(24):15427-15434. PubMed ID: 35693245
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Mesoporous Bi₂S₃ nanorods with graphene-assistance as low-cost counter-electrode materials in dye-sensitized solar cells.
    Guo SQ; Jing TZ; Zhang X; Yang XB; Yuan ZH; Hu FZ
    Nanoscale; 2014 Nov; 6(23):14433-40. PubMed ID: 25341187
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Epitaxial Growth of Highly Transparent Metal-Porphyrin Framework Thin Films for Efficient Bifacial Dye-Sensitized Solar Cells.
    Tian YB; Wang YY; Chen SM; Gu ZG; Zhang J
    ACS Appl Mater Interfaces; 2020 Jan; 12(1):1078-1083. PubMed ID: 31804061
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Graphene-platinum nanohybrid as a robust and low-cost counter electrode for dye-sensitized solar cells.
    Dao VD; Hoa NT; Larina LL; Lee JK; Choi HS
    Nanoscale; 2013 Dec; 5(24):12237-44. PubMed ID: 24146088
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Facile, substrate-scale growth of mono- and few-layer homogeneous MoS2 films on Mo foils with enhanced catalytic activity as counter electrodes in DSSCs.
    Antonelou A; Syrrokostas G; Sygellou L; Leftheriotis G; Dracopoulos V; Yannopoulos SN
    Nanotechnology; 2016 Jan; 27(4):045404. PubMed ID: 26657923
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Thermally Reduced Graphene Oxide as a Counter Electrode Material for Dye-Sensitized Solar Cells.
    Senthilkumar R; Raj SM; Ramakrishnan S; Kumaresan D; Kothurkar NK
    J Nanosci Nanotechnol; 2019 Apr; 19(4):2158-2165. PubMed ID: 30486960
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Mesoporous NiCo
    Zhang C; Deng L; Zhang P; Ren X; Li Y; He T
    Dalton Trans; 2017 Mar; 46(13):4403-4411. PubMed ID: 28290566
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Electrophoretic deposition of transparent MoS2-graphene nanosheet composite films as counter electrodes in dye-sensitized solar cells.
    Lin JY; Chan CY; Chou SW
    Chem Commun (Camb); 2013 Feb; 49(14):1440-2. PubMed ID: 23321629
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.