These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 25525691)

  • 1. Reduced-Size Integer Linear Programming Models for String Selection Problems: Application to the Farthest String Problem.
    Zörnig P
    J Comput Biol; 2015 Aug; 22(8):729-42. PubMed ID: 25525691
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An Integer Programming Formulation of the Minimum Common String Partition Problem.
    Ferdous SM; Rahman MS
    PLoS One; 2015; 10(7):e0130266. PubMed ID: 26134848
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chromosome structures: reduction of certain problems with unequal gene content and gene paralogs to integer linear programming.
    Lyubetsky V; Gershgorin R; Gorbunov K
    BMC Bioinformatics; 2017 Dec; 18(1):537. PubMed ID: 29212445
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Alignment of biological networks by integer linear programming: virus-host protein-protein interaction networks.
    Llabrés M; Riera G; Rosselló F; Valiente G
    BMC Bioinformatics; 2020 Nov; 21(Suppl 6):434. PubMed ID: 33203352
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Seriation of asymmetric matrices using integer linear programming.
    Brusco MJ
    Br J Math Stat Psychol; 2001 Nov; 54(Pt 2):367-75. PubMed ID: 11817100
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A hybrid metaheuristic for closest string problem.
    Mousavi SR
    Int J Comput Biol Drug Des; 2011; 4(3):245-61. PubMed ID: 21778558
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fast exact algorithms for the closest string and substring problems with application to the planted (L, d)-motif model.
    Chen ZZ; Wang L
    IEEE/ACM Trans Comput Biol Bioinform; 2011; 8(5):1400-10. PubMed ID: 21282867
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Advances in mixed-integer programming methods for chemical production scheduling.
    Velez S; Maravelias CT
    Annu Rev Chem Biomol Eng; 2014; 5():97-121. PubMed ID: 24910915
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Multi-State Perfect Phylogeny Problem with missing and removable data: solutions via integer-programming and chordal graph theory.
    Gusfield D
    J Comput Biol; 2010 Mar; 17(3):383-99. PubMed ID: 20377452
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Discovery of Boolean metabolic networks: integer linear programming based approach.
    Qiu Y; Jiang H; Ching WK; Cheng X
    BMC Syst Biol; 2018 Apr; 12(Suppl 1):7. PubMed ID: 29671395
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fast-SNP: a fast matrix pre-processing algorithm for efficient loopless flux optimization of metabolic models.
    Saa PA; Nielsen LK
    Bioinformatics; 2016 Dec; 32(24):3807-3814. PubMed ID: 27559155
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Closest string with outliers.
    Boucher C; Ma B
    BMC Bioinformatics; 2011 Feb; 12 Suppl 1(Suppl 1):S55. PubMed ID: 21342588
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient Minimum Flow Decomposition via Integer Linear Programming.
    Dias FHC; Williams L; Mumey B; Tomescu AI
    J Comput Biol; 2022 Nov; 29(11):1252-1267. PubMed ID: 36260412
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sequential computation of elementary modes and minimal cut sets in genome-scale metabolic networks using alternate integer linear programming.
    Song HS; Goldberg N; Mahajan A; Ramkrishna D
    Bioinformatics; 2017 Aug; 33(15):2345-2353. PubMed ID: 28369193
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The waiting time problem in a model hominin population.
    Sanford J; Brewer W; Smith F; Baumgardner J
    Theor Biol Med Model; 2015 Sep; 12():18. PubMed ID: 26376851
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CrossPlan: systematic planning of genetic crosses to validate mathematical models.
    Pratapa A; Adames N; Kraikivski P; Franzese N; Tyson JJ; Peccoud J; Murali TM
    Bioinformatics; 2018 Jul; 34(13):2237-2244. PubMed ID: 29432533
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Maximum Stacking Base Pairs: Hardness and Approximation by Nonlinear Linear Programming-Rounding.
    Liu L; Jiang H; Liu P; Zhu B; Zhu D
    J Comput Biol; 2020 Feb; 27(2):200-211. PubMed ID: 31905005
    [No Abstract]   [Full Text] [Related]  

  • 18. A note on probabilistic models over strings: the linear algebra approach.
    Bouchard-Côté A
    Bull Math Biol; 2013 Dec; 75(12):2529-50. PubMed ID: 24135792
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the hardness of counting and sampling center strings.
    Boucher C; Omar M
    IEEE/ACM Trans Comput Biol Bioinform; 2012; 9(6):1843-6. PubMed ID: 22641713
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Solving large double digestion problems for DNA restriction mapping by using branch-and-bound integer linear programming.
    Wu Z; Zhang Y
    Int J Bioinform Res Appl; 2008; 4(4):351-62. PubMed ID: 19008180
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.