BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

753 related articles for article (PubMed ID: 25525873)

  • 1. A highly conserved program of neuronal microexons is misregulated in autistic brains.
    Irimia M; Weatheritt RJ; Ellis JD; Parikshak NN; Gonatopoulos-Pournatzis T; Babor M; Quesnel-Vallières M; Tapial J; Raj B; O'Hanlon D; Barrios-Rodiles M; Sternberg MJ; Cordes SP; Roth FP; Wrana JL; Geschwind DH; Blencowe BJ
    Cell; 2014 Dec; 159(7):1511-23. PubMed ID: 25525873
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Misregulation of an Activity-Dependent Splicing Network as a Common Mechanism Underlying Autism Spectrum Disorders.
    Quesnel-Vallières M; Dargaei Z; Irimia M; Gonatopoulos-Pournatzis T; Ip JY; Wu M; Sterne-Weiler T; Nakagawa S; Woodin MA; Blencowe BJ; Cordes SP
    Mol Cell; 2016 Dec; 64(6):1023-1034. PubMed ID: 27984743
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Essential roles for the splicing regulator nSR100/SRRM4 during nervous system development.
    Quesnel-Vallières M; Irimia M; Cordes SP; Blencowe BJ
    Genes Dev; 2015 Apr; 29(7):746-59. PubMed ID: 25838543
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genome-wide CRISPR-Cas9 Interrogation of Splicing Networks Reveals a Mechanism for Recognition of Autism-Misregulated Neuronal Microexons.
    Gonatopoulos-Pournatzis T; Wu M; Braunschweig U; Roth J; Han H; Best AJ; Raj B; Aregger M; O'Hanlon D; Ellis JD; Calarco JA; Moffat J; Gingras AC; Blencowe BJ
    Mol Cell; 2018 Nov; 72(3):510-524.e12. PubMed ID: 30388412
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Autism-Misregulated eIF4G Microexons Control Synaptic Translation and Higher Order Cognitive Functions.
    Gonatopoulos-Pournatzis T; Niibori R; Salter EW; Weatheritt RJ; Tsang B; Farhangmehr S; Liang X; Braunschweig U; Roth J; Zhang S; Henderson T; Sharma E; Quesnel-Vallières M; Permanyer J; Maier S; Georgiou J; Irimia M; Sonenberg N; Forman-Kay JD; Gingras AC; Collingridge GL; Woodin MA; Cordes SP; Blencowe BJ
    Mol Cell; 2020 Mar; 77(6):1176-1192.e16. PubMed ID: 31999954
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neuronal-specific microexon splicing of
    Capponi S; Stöffler N; Irimia M; Van Schaik FMA; Ondik MM; Biniossek ML; Lehmann L; Mitschke J; Vermunt MW; Creyghton MP; Graybiel AM; Reinheckel T; Schilling O; Blencowe BJ; Crittenden JR; Timmers HTM
    RNA Biol; 2020 Jan; 17(1):62-74. PubMed ID: 31559909
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel protein domain in an ancestral splicing factor drove the evolution of neural microexons.
    Torres-Méndez A; Bonnal S; Marquez Y; Roth J; Iglesias M; Permanyer J; Almudí I; O'Hanlon D; Guitart T; Soller M; Gingras AC; Gebauer F; Rentzsch F; Blencowe BJ; Valcárcel J; Irimia M
    Nat Ecol Evol; 2019 Apr; 3(4):691-701. PubMed ID: 30833759
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cross-regulation between an alternative splicing activator and a transcription repressor controls neurogenesis.
    Raj B; O'Hanlon D; Vessey JP; Pan Q; Ray D; Buckley NJ; Miller FD; Blencowe BJ
    Mol Cell; 2011 Sep; 43(5):843-50. PubMed ID: 21884984
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microexons--tiny but mighty.
    Scheckel C; Darnell RB
    EMBO J; 2015 Feb; 34(3):273-4. PubMed ID: 25535247
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microexons: at the nexus of nervous system development, behaviour and autism spectrum disorder.
    Gonatopoulos-Pournatzis T; Blencowe BJ
    Curr Opin Genet Dev; 2020 Dec; 65():22-33. PubMed ID: 32535349
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Silencing of SRRM4 suppresses microexon inclusion and promotes tumor growth across cancers.
    Head SA; Hernandez-Alias X; Yang JS; Ciampi L; Beltran-Sastre V; Torres-Méndez A; Irimia M; Schaefer MH; Serrano L
    PLoS Biol; 2021 Feb; 19(2):e3001138. PubMed ID: 33621242
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A global regulatory mechanism for activating an exon network required for neurogenesis.
    Raj B; Irimia M; Braunschweig U; Sterne-Weiler T; O'Hanlon D; Lin ZY; Chen GI; Easton LE; Ule J; Gingras AC; Eyras E; Blencowe BJ
    Mol Cell; 2014 Oct; 56(1):90-103. PubMed ID: 25219497
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Parallel evolution of a splicing program controlling neuronal excitability in flies and mammals.
    Torres-Méndez A; Pop S; Bonnal S; Almudi I; Avola A; Roberts RJV; Paolantoni C; Alcaina-Caro A; Martín-Anduaga A; Haussmann IU; Morin V; Casares F; Soller M; Kadener S; Roignant JY; Prieto-Godino L; Irimia M
    Sci Adv; 2022 Jan; 8(4):eabk0445. PubMed ID: 35089784
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MicroExonator enables systematic discovery and quantification of microexons across mouse embryonic development.
    Parada GE; Munita R; Georgakopoulos-Soares I; Fernandes HJR; Kedlian VR; Metzakopian E; Andres ME; Miska EA; Hemberg M
    Genome Biol; 2021 Jan; 22(1):43. PubMed ID: 33482885
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of vertebrate nervous system alternative splicing and development by an SR-related protein.
    Calarco JA; Superina S; O'Hanlon D; Gabut M; Raj B; Pan Q; Skalska U; Clarke L; Gelinas D; van der Kooy D; Zhen M; Ciruna B; Blencowe BJ
    Cell; 2009 Sep; 138(5):898-910. PubMed ID: 19737518
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microexons go big.
    Yang L; Chen LL
    Cell; 2014 Dec; 159(7):1488-9. PubMed ID: 25525868
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The small cell lung cancer-specific isoform of RE1-silencing transcription factor (REST) is regulated by neural-specific Ser/Arg repeat-related protein of 100 kDa (nSR100).
    Shimojo M; Shudo Y; Ikeda M; Kobashi T; Ito S
    Mol Cancer Res; 2013 Oct; 11(10):1258-68. PubMed ID: 23928058
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pervasive misannotation of microexons that are evolutionarily conserved and crucial for gene function in plants.
    Yu H; Li M; Sandhu J; Sun G; Schnable JC; Walia H; Xie W; Yu B; Mower JP; Zhang C
    Nat Commun; 2022 Feb; 13(1):820. PubMed ID: 35145097
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SRRM4-dependent neuron-specific alternative splicing of protrudin transcripts regulates neurite outgrowth.
    Ohnishi T; Shirane M; Nakayama KI
    Sci Rep; 2017 Jan; 7():41130. PubMed ID: 28106138
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Alternative splicing takes shape during neuronal development.
    Grabowski P
    Curr Opin Genet Dev; 2011 Aug; 21(4):388-94. PubMed ID: 21511457
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 38.