BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 25525991)

  • 1. Droplet-based microfluidics platform for ultra-high-throughput bioprospecting of cellulolytic microorganisms.
    Najah M; Calbrix R; Mahendra-Wijaya IP; Beneyton T; Griffiths AD; Drevelle A
    Chem Biol; 2014 Dec; 21(12):1722-32. PubMed ID: 25525991
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Droplet-based microfluidic high-throughput screening of heterologous enzymes secreted by the yeast Yarrowia lipolytica.
    Beneyton T; Thomas S; Griffiths AD; Nicaud JM; Drevelle A; Rossignol T
    Microb Cell Fact; 2017 Jan; 16(1):18. PubMed ID: 28143479
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Screening for novel bacteria from the bioenergy feedstock switchgrass (Panicum virgatum L.).
    Plecha S; Hall D; Tiquia-Arashiro SM
    Environ Technol; 2013; 34(13-16):1895-904. PubMed ID: 24350443
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CotA laccase: high-throughput manipulation and analysis of recombinant enzyme libraries expressed in E. coli using droplet-based microfluidics.
    Beneyton T; Coldren F; Baret JC; Griffiths AD; Taly V
    Analyst; 2014 Jul; 139(13):3314-23. PubMed ID: 24733162
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel precipitated fluorescent substrates for the screening of cellulolytic microorganisms.
    Ivanen DR; Rongjina NL; Shishlyannikov SM; Litviakova GI; Isaeva-Ivanova LS; Shabalin KA; Kulminskaya AA
    J Microbiol Methods; 2009 Mar; 76(3):295-300. PubMed ID: 19150471
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-throughput screening of filamentous fungi using nanoliter-range droplet-based microfluidics.
    Beneyton T; Wijaya IP; Postros P; Najah M; Leblond P; Couvent A; Mayot E; Griffiths AD; Drevelle A
    Sci Rep; 2016 Jun; 6():27223. PubMed ID: 27270141
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enzyme activities of aerobic lignocellulolytic bacteria isolated from wet tropical forest soils.
    Woo HL; Hazen TC; Simmons BA; DeAngelis KM
    Syst Appl Microbiol; 2014 Feb; 37(1):60-7. PubMed ID: 24238986
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bioprospecting of functional cellulases from metagenome for second generation biofuel production: a review.
    Tiwari R; Nain L; Labrou NE; Shukla P
    Crit Rev Microbiol; 2018 Mar; 44(2):244-257. PubMed ID: 28609211
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Droplet-based microfluidic platform for heterogeneous enzymatic assays.
    Chang C; Sustarich J; Bharadwaj R; Chandrasekaran A; Adams PD; Singh AK
    Lab Chip; 2013 May; 13(9):1817-22. PubMed ID: 23507976
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-throughput screening for industrial enzyme production hosts by droplet microfluidics.
    Sjostrom SL; Bai Y; Huang M; Liu Z; Nielsen J; Joensson HN; Andersson Svahn H
    Lab Chip; 2014 Feb; 14(4):806-13. PubMed ID: 24366236
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel screening method of cellulase-producing bacteria.
    Wang W; Wang P; Hu R
    Prikl Biokhim Mikrobiol; 2011; 47(1):58-60. PubMed ID: 21438471
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exploring biodiversity for cellulosic biofuel production.
    Gowen CM; Fong SS
    Chem Biodivers; 2010 May; 7(5):1086-97. PubMed ID: 20491068
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sensitive high-throughput screening for the detection of reducing sugars.
    Mellitzer A; Glieder A; Weis R; Reisinger C; Flicker K
    Biotechnol J; 2012 Jan; 7(1):155-62. PubMed ID: 21538898
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of sampling techniques and different media for the enrichment and isolation of cellulolytic organisms from biogas fermenters.
    Rettenmaier R; Duerr C; Neuhaus K; Liebl W; Zverlov VV
    Syst Appl Microbiol; 2019 Jul; 42(4):481-487. PubMed ID: 31153679
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Label-free, high-throughput, electrical detection of cells in droplets.
    Kemna EW; Segerink LI; Wolbers F; Vermes I; van den Berg A
    Analyst; 2013 Aug; 138(16):4585-92. PubMed ID: 23748871
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A high-throughput solid phase screening method for identification of lignocellulose-degrading bacteria from environmental isolates.
    Gardner JG; Zeitler LA; Wigstrom WJ; Engel KC; Keating DH
    Biotechnol Lett; 2012 Jan; 34(1):81-9. PubMed ID: 21904949
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fluorescence-activated droplet sorting of lipolytic microorganisms using a compact optical system.
    Qiao Y; Zhao X; Zhu J; Tu R; Dong L; Wang L; Dong Z; Wang Q; Du W
    Lab Chip; 2017 Dec; 18(1):190-196. PubMed ID: 29227495
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Droplet sorting based on the number of encapsulated particles using a solenoid valve.
    Cao Z; Chen F; Bao N; He H; Xu P; Jana S; Jung S; Lian H; Lu C
    Lab Chip; 2013 Jan; 13(1):171-8. PubMed ID: 23160342
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Traffic jams reduce hydrolytic efficiency of cellulase on cellulose surface.
    Igarashi K; Uchihashi T; Koivula A; Wada M; Kimura S; Okamoto T; Penttilä M; Ando T; Samejima M
    Science; 2011 Sep; 333(6047):1279-82. PubMed ID: 21885779
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A droplet-to-digital (D2D) microfluidic device for single cell assays.
    Shih SC; Gach PC; Sustarich J; Simmons BA; Adams PD; Singh S; Singh AK
    Lab Chip; 2015 Jan; 15(1):225-36. PubMed ID: 25354549
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.