BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 25526102)

  • 1. Large-area preparation of high-quality and uniform three-dimensional graphene networks through thermal degradation of graphene oxide-nitrocellulose composites.
    Zhang X; Ziemer KS; Zhang K; Ramirez D; Li L; Wang S; Hope-Weeks LJ; Weeks BL
    ACS Appl Mater Interfaces; 2015 Jan; 7(2):1057-64. PubMed ID: 25526102
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Three-Dimensional Macroporous Polypyrrole-Derived Graphene Electrode Prepared by the Hydrogen Bubble Dynamic Template for Supercapacitors and Metal-Free Catalysts.
    Yang X; Liu A; Zhao Y; Lu H; Zhang Y; Wei W; Li Y; Liu S
    ACS Appl Mater Interfaces; 2015 Oct; 7(42):23731-40. PubMed ID: 26457969
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 3D Graphene Frameworks/Co
    Bao L; Li T; Chen S; Peng C; Li L; Xu Q; Chen Y; Ou E; Xu W
    Small; 2017 Feb; 13(5):. PubMed ID: 27862948
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Self-Assembled Three-Dimensional Graphene Macrostructures: Synthesis and Applications in Supercapacitors.
    Xu Y; Shi G; Duan X
    Acc Chem Res; 2015 Jun; 48(6):1666-75. PubMed ID: 26042764
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Controlled porous structures of graphene aerogels and their effect on supercapacitor performance.
    Jung SM; Mafra DL; Lin CT; Jung HY; Kong J
    Nanoscale; 2015 Mar; 7(10):4386-93. PubMed ID: 25682978
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Morphology-controlled MnO2-graphene oxide-diatomaceous earth 3-dimensional (3D) composites for high-performance supercapacitors.
    Wen ZQ; Li M; Li F; Zhu SJ; Liu XY; Zhang YX; Kumeria T; Losic D; Gao Y; Zhang W; He SX
    Dalton Trans; 2016 Jan; 45(3):936-42. PubMed ID: 26645931
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modular Graphene-Based 3D Covalent Networks: Functional Architectures for Energy Applications.
    Zhang X; Ciesielski A; Richard F; Chen P; Prasetyanto EA; De Cola L; Samorì P
    Small; 2016 Feb; 12(8):1044-52. PubMed ID: 26763206
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Freestanding three-dimensional graphene/MnO2 composite networks as ultralight and flexible supercapacitor electrodes.
    He Y; Chen W; Li X; Zhang Z; Fu J; Zhao C; Xie E
    ACS Nano; 2013 Jan; 7(1):174-82. PubMed ID: 23249211
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Three-dimensional assemblies of graphene prepared by a novel chemical reduction-induced self-assembly method.
    Zhang L; Chen G; Hedhili MN; Zhang H; Wang P
    Nanoscale; 2012 Nov; 4(22):7038-45. PubMed ID: 23044648
    [TBL] [Abstract][Full Text] [Related]  

  • 10. One-step electroplating porous graphene oxide electrodes of supercapacitors for ultrahigh capacitance and energy density.
    Wang Y; Zhu J
    Nanotechnology; 2015 Feb; 26(5):055401. PubMed ID: 25590896
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrafast growth of carbon nanotubes on graphene for capacitive energy storage.
    Li Z; Yang B; Su Y; Wang H; Groeper J
    Nanotechnology; 2016 Jan; 27(2):025401. PubMed ID: 26630480
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design of 3D Graphene-Oxide Spheres and Their Derived Hierarchical Porous Structures for High Performance Supercapacitors.
    Li Z; Gadipelli S; Yang Y; Guo Z
    Small; 2017 Nov; 13(44):. PubMed ID: 29024386
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High energy density asymmetric supercapacitors with a nickel oxide nanoflake cathode and a 3D reduced graphene oxide anode.
    Luan F; Wang G; Ling Y; Lu X; Wang H; Tong Y; Liu XX; Li Y
    Nanoscale; 2013 Sep; 5(17):7984-90. PubMed ID: 23864110
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-assembling synthesis of free-standing nanoporous graphene-transition-metal oxide flexible electrodes for high-performance lithium-ion batteries and supercapacitors.
    Huang X; Sun B; Chen S; Wang G
    Chem Asian J; 2014 Jan; 9(1):206-11. PubMed ID: 24129981
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis of bacteria promoted reduced graphene oxide-nickel sulfide networks for advanced supercapacitors.
    Zhang H; Yu X; Guo D; Qu B; Zhang M; Li Q; Wang T
    ACS Appl Mater Interfaces; 2013 Aug; 5(15):7335-40. PubMed ID: 23751359
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-dimensional hierarchically porous all-carbon foams for supercapacitor.
    You B; Jiang J; Fan S
    ACS Appl Mater Interfaces; 2014 Sep; 6(17):15302-8. PubMed ID: 25116737
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Manganese oxide/graphene aerogel composites as an outstanding supercapacitor electrode material.
    Wang CC; Chen HC; Lu SY
    Chemistry; 2014 Jan; 20(2):517-23. PubMed ID: 24327570
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Graphene quantum dots-three-dimensional graphene composites for high-performance supercapacitors.
    Chen Q; Hu Y; Hu C; Cheng H; Zhang Z; Shao H; Qu L
    Phys Chem Chem Phys; 2014 Sep; 16(36):19307-13. PubMed ID: 25100222
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Supercapacitors based on self-assembled graphene organogel.
    Sun Y; Wu Q; Shi G
    Phys Chem Chem Phys; 2011 Oct; 13(38):17249-54. PubMed ID: 21879072
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Graphene-based nanowire supercapacitors.
    Chen Z; Yu D; Xiong W; Liu P; Liu Y; Dai L
    Langmuir; 2014 Apr; 30(12):3567-71. PubMed ID: 24588395
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.