BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 25526102)

  • 21. Sonochemical-assisted synthesis of 3D graphene/nanoparticle foams and their application in supercapacitor.
    Lee KG; Jeong JM; Lee SJ; Yeom B; Lee MK; Choi BG
    Ultrason Sonochem; 2015 Jan; 22():422-8. PubMed ID: 24857684
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Electrospray-deposition of graphene electrodes: a simple technique to build high-performance supercapacitors.
    Tang H; Yang C; Lin Z; Yang Q; Kang F; Wong CP
    Nanoscale; 2015 May; 7(20):9133-9. PubMed ID: 25896639
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Reduced graphene oxide hydrogel film with a continuous ion transport network for supercapacitors.
    Feng X; Chen W; Yan L
    Nanoscale; 2015 Feb; 7(8):3712-8. PubMed ID: 25641022
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Wet-spun, porous, orientational graphene hydrogel films for high-performance supercapacitor electrodes.
    Kou L; Liu Z; Huang T; Zheng B; Tian Z; Deng Z; Gao C
    Nanoscale; 2015 Mar; 7(9):4080-7. PubMed ID: 25660705
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Metal-Organic Coordination Polymer to Prepare Density Controllable and High Nitrogen-Doped Content Carbon/Graphene for High Performance Supercapacitors.
    Luo J; Zhong W; Zou Y; Xiong C; Yang W
    ACS Appl Mater Interfaces; 2017 Jan; 9(1):317-326. PubMed ID: 27966882
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Synthesis of morphology-tunable electroactive biomass/graphene composites using metal ions for supercapacitors.
    Xiong C; Zou Y; Peng Z; Zhong W
    Nanoscale; 2019 Apr; 11(15):7304-7316. PubMed ID: 30938393
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Highly atom-economic synthesis of graphene/Mn₃O₄ hybrid composites for electrochemical supercapacitors.
    Jiangying Q; Feng G; Quan Z; Zhiyu W; Han H; Beibei L; Wubo W; Xuzhen W; Jieshan Q
    Nanoscale; 2013 Apr; 5(7):2999-3005. PubMed ID: 23459860
    [TBL] [Abstract][Full Text] [Related]  

  • 28. 3D macroporous graphene frameworks for supercapacitors with high energy and power densities.
    Choi BG; Yang M; Hong WH; Choi JW; Huh YS
    ACS Nano; 2012 May; 6(5):4020-8. PubMed ID: 22524516
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A general approach for fabrication of nitrogen-doped graphene sheets and its application in supercapacitors.
    Wang D; Min Y; Yu Y; Peng B
    J Colloid Interface Sci; 2014 Mar; 417():270-7. PubMed ID: 24407687
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Layered graphene oxide nanostructures with sandwiched conducting polymers as supercapacitor electrodes.
    Zhang LL; Zhao S; Tian XN; Zhao XS
    Langmuir; 2010 Nov; 26(22):17624-8. PubMed ID: 20961127
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An ice-templated, pH-tunable self-assembly route to hierarchically porous graphene nanoscroll networks.
    Shin YE; Sa YJ; Park S; Lee J; Shin KH; Joo SH; Ko H
    Nanoscale; 2014 Aug; 6(16):9734-41. PubMed ID: 24998618
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ni(OH)2 nanoplates grown on graphene as advanced electrochemical pseudocapacitor materials.
    Wang H; Casalongue HS; Liang Y; Dai H
    J Am Chem Soc; 2010 Jun; 132(21):7472-7. PubMed ID: 20443559
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Deposition of three-dimensional graphene aerogel on nickel foam as a binder-free supercapacitor electrode.
    Ye S; Feng J; Wu P
    ACS Appl Mater Interfaces; 2013 Aug; 5(15):7122-9. PubMed ID: 23844989
    [TBL] [Abstract][Full Text] [Related]  

  • 34. High-performance supercapacitor electrodes based on graphene achieved by thermal treatment with the aid of nitric acid.
    Xiao N; Tan H; Zhu J; Tan L; Rui X; Dong X; Yan Q
    ACS Appl Mater Interfaces; 2013 Oct; 5(19):9656-62. PubMed ID: 24045054
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Metal oxide-coated three-dimensional graphene prepared by the use of metal-organic frameworks as precursors.
    Cao X; Zheng B; Rui X; Shi W; Yan Q; Zhang H
    Angew Chem Int Ed Engl; 2014 Jan; 53(5):1404-9. PubMed ID: 24459058
    [TBL] [Abstract][Full Text] [Related]  

  • 36. All-solid-state flexible supercapacitors based on highly dispersed polypyrrole nanowire and reduced graphene oxide composites.
    Yu C; Ma P; Zhou X; Wang A; Qian T; Wu S; Chen Q
    ACS Appl Mater Interfaces; 2014 Oct; 6(20):17937-43. PubMed ID: 25247315
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fast fabrication of NiO@graphene composites for supercapacitor electrodes: Combination of reduction and deposition.
    Hui X; Qian L; Harris G; Wang T; Che J
    Mater Des; 2016 Nov; 109():242-250. PubMed ID: 28943692
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Chlorine-Induced In Situ Regulation to Synthesize Graphene Frameworks with Large Specific Area for Excellent Supercapacitor Performance.
    Zhu Y; Cui H; Meng X; Zheng J; Yang P; Li L; Wang Z; Jia S; Zhu Z
    ACS Appl Mater Interfaces; 2016 Mar; 8(10):6481-7. PubMed ID: 26902453
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Bifunctional reduced graphene oxide/V2O5 composite hydrogel: fabrication, high performance as electromagnetic wave absorbent and supercapacitor.
    Zhang H; Xie A; Wang C; Wang H; Shen Y; Tian X
    Chemphyschem; 2014 Feb; 15(2):366-73. PubMed ID: 24318771
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Self-assembled three-dimensional hierarchical graphene/polypyrrole nanotube hybrid aerogel and its application for supercapacitors.
    Ye S; Feng J
    ACS Appl Mater Interfaces; 2014 Jun; 6(12):9671-9. PubMed ID: 24873315
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.