These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 25526131)

  • 1. Topology of megagauss magnetic fields and of heat-carrying electrons produced in a high-power laser-solid interaction.
    Lancia L; Albertazzi B; Boniface C; Grisollet A; Riquier R; Chaland F; Le Thanh KC; Mellor P; Antici P; Buffechoux S; Chen SN; Doria D; Nakatsutsumi M; Peth C; Swantusch M; Stardubtsev M; Palumbo L; Borghesi M; Willi O; Pépin H; Fuchs J
    Phys Rev Lett; 2014 Dec; 113(23):235001. PubMed ID: 25526131
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Revisiting nonlocal electron-energy transport in inertial-fusion conditions.
    Schurtz G; Gary S; Hulin S; Chenais-Popovics C; Gauthier JC; Thais F; Breil J; Durut F; Feugeas JL; Maire PH; Nicolaï P; Peyrusse O; Reverdin C; Soullié G; Tikhonchuk V; Villette B; Fourment C
    Phys Rev Lett; 2007 Mar; 98(9):095002. PubMed ID: 17359162
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fast advection of magnetic fields by hot electrons.
    Willingale L; Thomas AG; Nilson PM; Kaluza MC; Bandyopadhyay S; Dangor AE; Evans RG; Fernandes P; Haines MG; Kamperidis C; Kingham RJ; Minardi S; Notley M; Ridgers CP; Rozmus W; Sherlock M; Tatarakis M; Wei MS; Najmudin Z; Krushelnick K
    Phys Rev Lett; 2010 Aug; 105(9):095001. PubMed ID: 20868167
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Magnetic reconnection in plasma under inertial confinement fusion conditions driven by heat flux effects in Ohm's law.
    Joglekar AS; Thomas AG; Fox W; Bhattacharjee A
    Phys Rev Lett; 2014 Mar; 112(10):105004. PubMed ID: 24679302
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-resolution measurements of the spatial and temporal evolution of megagauss magnetic fields created in intense short-pulse laser-plasma interactions.
    Chatterjee G; Singh PK; Adak A; Lad AD; Kumar GR
    Rev Sci Instrum; 2014 Jan; 85(1):013505. PubMed ID: 24517763
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Precision mapping of laser-driven magnetic fields and their evolution in high-energy-density plasmas.
    Gao L; Nilson PM; Igumenshchev IV; Haines MG; Froula DH; Betti R; Meyerhofer DD
    Phys Rev Lett; 2015 May; 114(21):215003. PubMed ID: 26066442
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Observation of megagauss-field topology changes due to magnetic reconnection in laser-produced plasmas.
    Li CK; Séguin FH; Frenje JA; Rygg JR; Petrasso RD; Town RP; Landen OL; Knauer JP; Smalyuk VA
    Phys Rev Lett; 2007 Aug; 99(5):055001. PubMed ID: 17930762
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Micron-scale mapping of megagauss magnetic fields using optical polarimetry to probe hot electron transport in petawatt-class laser-solid interactions.
    Chatterjee G; Singh PK; Robinson APL; Blackman D; Booth N; Culfa O; Dance RJ; Gizzi LA; Gray RJ; Green JS; Koester P; Kumar GR; Labate L; Lad AD; Lancaster KL; Pasley J; Woolsey NC; Rajeev PP
    Sci Rep; 2017 Aug; 7(1):8347. PubMed ID: 28827645
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fast electron transport dynamics and energy deposition in magnetized, imploded cylindrical plasma.
    Kawahito D; Bailly-Grandvaux M; Dozières M; McGuffey C; Forestier-Colleoni P; Peebles J; Honrubia JJ; Khiar B; Hansen S; Tzeferacos P; Wei MS; Krauland CM; Gourdain P; Davies JR; Matsuo K; Fujioka S; Campbell EM; Santos JJ; Batani D; Bhutwala K; Zhang S; Beg FN
    Philos Trans A Math Phys Eng Sci; 2021 Jan; 379(2189):20200052. PubMed ID: 33280559
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prospects for x-ray polarimetry measurements of magnetic fields in magnetized liner inertial fusion plasmas.
    Lynn AG; Gilmore M
    Rev Sci Instrum; 2014 Nov; 85(11):11D609. PubMed ID: 25430185
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Measuring E and B fields in laser-produced plasmas with monoenergetic proton radiography.
    Li CK; Séguin FH; Frenje JA; Rygg JR; Petrasso RD; Town RP; Amendt PA; Hatchett SP; Landen OL; Mackinnon AJ; Patel PK; Smalyuk VA; Sangster TC; Knauer JP
    Phys Rev Lett; 2006 Sep; 97(13):135003. PubMed ID: 17026041
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Seeding magnetic fields for laser-driven flux compression in high-energy-density plasmas.
    Gotchev OV; Knauer JP; Chang PY; Jang NW; Shoup MJ; Meyerhofer DD; Betti R
    Rev Sci Instrum; 2009 Apr; 80(4):043504. PubMed ID: 19405657
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamics of self-generated, large amplitude magnetic fields following high-intensity laser matter interaction.
    Sarri G; Macchi A; Cecchetti CA; Kar S; Liseykina TV; Yang XH; Dieckmann ME; Fuchs J; Galimberti M; Gizzi LA; Jung R; Kourakis I; Osterholz J; Pegoraro F; Robinson AP; Romagnani L; Willi O; Borghesi M
    Phys Rev Lett; 2012 Nov; 109(20):205002. PubMed ID: 23215496
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Laser-driven magnetic-flux compression in high-energy-density plasmas.
    Gotchev OV; Chang PY; Knauer JP; Meyerhofer DD; Polomarov O; Frenje J; Li CK; Manuel MJ; Petrasso RD; Rygg JR; Séguin FH; Betti R
    Phys Rev Lett; 2009 Nov; 103(21):215004. PubMed ID: 20366046
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamics of the Electromagnetic Fields Induced by Fast Electron Propagation in Near-Solid-Density Media.
    Romagnani L; Robinson APL; Clarke RJ; Doria D; Lancia L; Nazarov W; Notley MM; Pipahl A; Quinn K; Ramakrishna B; Wilson PA; Fuchs J; Willi O; Borghesi M
    Phys Rev Lett; 2019 Jan; 122(2):025001. PubMed ID: 30720299
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Production of large volume, strongly magnetized laser-produced plasmas by use of pulsed external magnetic fields.
    Albertazzi B; Béard J; Ciardi A; Vinci T; Albrecht J; Billette J; Burris-Mog T; Chen SN; Da Silva D; Dittrich S; Herrmannsdörfer T; Hirardin B; Kroll F; Nakatsutsumi M; Nitsche S; Riconda C; Romagnagni L; Schlenvoigt HP; Simond S; Veuillot E; Cowan TE; Portugall O; Pépin H; Fuchs J
    Rev Sci Instrum; 2013 Apr; 84(4):043505. PubMed ID: 23635194
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cylindrical implosion platform for the study of highly magnetized plasmas at Laser MegaJoule.
    Pérez-Callejo G; Vlachos C; Walsh CA; Florido R; Bailly-Grandvaux M; Vaisseau X; Suzuki-Vidal F; McGuffey C; Beg FN; Bradford P; Ospina-Bohórquez V; Batani D; Raffestin D; Colaïtis A; Tikhonchuk V; Casner A; Koenig M; Albertazzi B; Fedosejevs R; Woolsey N; Ehret M; Debayle A; Loiseau P; Calisti A; Ferri S; Honrubia J; Kingham R; Mancini RC; Gigosos MA; Santos JJ
    Phys Rev E; 2022 Sep; 106(3-2):035206. PubMed ID: 36266806
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Measurements of energetic proton transport through magnetized plasma from intense laser interactions with solids.
    Clark EL; Krushelnick K; Davies JR; Zepf M; Tatarakis M; Beg FN; Machacek A; Norreys PA; Santala MI; Watts I; Dangor AE
    Phys Rev Lett; 2000 Jan; 84(4):670-3. PubMed ID: 11017343
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Origin of protons accelerated by an intense laser and the dependence of their energy on the plasma density.
    Nakamura T; Kawata S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Feb; 67(2 Pt 2):026403. PubMed ID: 12636818
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deflection of MeV electrons by self-generated magnetic fields in intense laser-solid interactions.
    Pérez F; Kemp AJ; Divol L; Chen CD; Patel PK
    Phys Rev Lett; 2013 Dec; 111(24):245001. PubMed ID: 24483668
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.