These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 25526316)

  • 1. Highly efficient and selective photocatalytic oxidation of sulfide by a chromophore-catalyst dyad of ruthenium-based complexes.
    Li TT; Li FM; Zhao WL; Tian YH; Chen Y; Cai R; Fu WF
    Inorg Chem; 2015 Jan; 54(1):183-91. PubMed ID: 25526316
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photocatalytic Oxygenation of Sulfide and Alkenes by Trinuclear Ruthenium Clusters.
    Phungsripheng S; Kozawa K; Akita M; Inagaki A
    Inorg Chem; 2016 Apr; 55(8):3750-8. PubMed ID: 27014848
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Insight into highly selective photocatalytic oxidation of alcohols by a new trinuclear ruthenium complex with visible light.
    Chao D; Fu WF
    Dalton Trans; 2014 Jan; 43(1):306-10. PubMed ID: 24100353
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photocatalytic oxidation of organic compounds in a hybrid system composed of a molecular catalyst and visible light-absorbing semiconductor.
    Zhou X; Li F; Li X; Li H; Wang Y; Sun L
    Dalton Trans; 2015 Jan; 44(2):475-9. PubMed ID: 25407102
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Catalytic photooxidation of alcohols by an unsymmetrical tetra(pyridyl)pyrazine-bridged dinuclear Ru complex.
    Chen W; Rein FN; Scott BL; Rocha RC
    Chemistry; 2011 May; 17(20):5595-604. PubMed ID: 21452180
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Facile synthesis of a ruthenium assembly and its application for light-driven oxidation of alcohols in water.
    Chao D; Fu WF
    Chem Commun (Camb); 2013 May; 49(37):3872-4. PubMed ID: 23546454
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photophysical and electrochemical properties of platinum(II) complexes bearing a chromophore-acceptor dyad and their photocatalytic hydrogen evolution.
    Zhang GJ; Gan X; Xu QQ; Chen Y; Zhao XJ; Qin B; Lv XJ; Lai SW; Fu WF; Che CM
    Dalton Trans; 2012 Jul; 41(27):8421-9. PubMed ID: 22643575
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Making oxygen with ruthenium complexes.
    Concepcion JJ; Jurss JW; Brennaman MK; Hoertz PG; Patrocinio AO; Murakami Iha NY; Templeton JL; Meyer TJ
    Acc Chem Res; 2009 Dec; 42(12):1954-65. PubMed ID: 19817345
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Light-Induced Activation of a Molybdenum Oxotransferase Model within a Ru(II)-Mo(VI) Dyad.
    Ducrot AB; Coulson BA; Perutz RN; Duhme-Klair AK
    Inorg Chem; 2016 Dec; 55(24):12583-12594. PubMed ID: 27690401
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Visible light-driven water oxidation by a molecular ruthenium catalyst in homogeneous system.
    Duan L; Xu Y; Zhang P; Wang M; Sun L
    Inorg Chem; 2010 Jan; 49(1):209-15. PubMed ID: 19994841
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A dyad as photocatalyst for light-driven sulfide oxygenation with water as the unique oxygen atom source.
    Hamelin O; Guillo P; Loiseau F; Boissonnet MF; Ménage S
    Inorg Chem; 2011 Sep; 50(17):7952-4. PubMed ID: 21793512
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photochemical, electrochemical, and photoelectrochemical water oxidation catalyzed by water-soluble mononuclear ruthenium complexes.
    Li TT; Zhao WL; Chen Y; Li FM; Wang CJ; Tian YH; Fu WF
    Chemistry; 2014 Oct; 20(43):13957-64. PubMed ID: 25205065
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Water oxidation catalysis: influence of anionic ligands upon the redox properties and catalytic performance of mononuclear ruthenium complexes.
    Tong L; Wang Y; Duan L; Xu Y; Cheng X; Fischer A; Ahlquist MS; Sun L
    Inorg Chem; 2012 Mar; 51(6):3388-98. PubMed ID: 22360662
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Light-induced charge separation and photocatalytic hydrogen evolution from water using Ru(II)Pt(II)-based molecular devices: effects of introducing additional donor and/or acceptor sites.
    Ajayakumar G; Kobayashi M; Masaoka S; Sakai K
    Dalton Trans; 2011 Apr; 40(15):3955-66. PubMed ID: 21416079
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electronic modification of the [Ru(II)(tpy)(bpy)(OH(2))](2+) scaffold: effects on catalytic water oxidation.
    Wasylenko DJ; Ganesamoorthy C; Henderson MA; Koivisto BD; Osthoff HD; Berlinguette CP
    J Am Chem Soc; 2010 Nov; 132(45):16094-106. PubMed ID: 20977265
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photocatalyzed sulfide oxygenation with water as the unique oxygen atom source.
    Guillo P; Hamelin O; Batat P; Jonusauskas G; McClenaghan ND; Ménage S
    Inorg Chem; 2012 Feb; 51(4):2222-30. PubMed ID: 22296643
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photopromoted Ru-catalyzed asymmetric aerobic sulfide oxidation and epoxidation using water as a proton transfer mediator.
    Tanaka H; Nishikawa H; Uchida T; Katsuki T
    J Am Chem Soc; 2010 Sep; 132(34):12034-41. PubMed ID: 20701287
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Systematic study of modifications to ruthenium(II) polypyridine dyads for electron injection enhancement.
    Jakubikova E; Martin RL; Batista ER
    Inorg Chem; 2010 Mar; 49(6):2975-82. PubMed ID: 20141117
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photocatalytic water oxidation by molecular assemblies based on cobalt catalysts.
    Zhou X; Li F; Li H; Zhang B; Yu F; Sun L
    ChemSusChem; 2014 Sep; 7(9):2453-6. PubMed ID: 25111070
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new dinuclear ruthenium complex as an efficient water oxidation catalyst.
    Xu Y; Akermark T; Gyollai V; Zou D; Eriksson L; Duan L; Zhang R; Akermark B; Sun L
    Inorg Chem; 2009 Apr; 48(7):2717-9. PubMed ID: 19243152
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.