These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 25526359)

  • 1. Inertial sensor-based smoother for gait analysis.
    Suh YS
    Sensors (Basel); 2014 Dec; 14(12):24338-57. PubMed ID: 25526359
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inertial sensor-based two feet motion tracking for gait analysis.
    Hung TN; Suh YS
    Sensors (Basel); 2013 Apr; 13(5):5614-29. PubMed ID: 23628759
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gait analysis using floor markers and inertial sensors.
    Do TN; Suh YS
    Sensors (Basel); 2012; 12(2):1594-611. PubMed ID: 22438727
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of the performance of 17 algorithms from a systematic review: Influence of sensor position, analysed variable and computational approach in gait timing estimation from IMU measurements.
    Pacini Panebianco G; Bisi MC; Stagni R; Fantozzi S
    Gait Posture; 2018 Oct; 66():76-82. PubMed ID: 30170137
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Foot Pose Estimation Using an Inertial Sensor Unit and Two Distance Sensors.
    Duong PD; Suh YS
    Sensors (Basel); 2015 Jul; 15(7):15888-902. PubMed ID: 26151205
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Novel Pedestrian Navigation Algorithm for a Foot-Mounted Inertial-Sensor-Based System.
    Ren M; Pan K; Liu Y; Guo H; Zhang X; Wang P
    Sensors (Basel); 2016 Jan; 16(1):. PubMed ID: 26805848
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improved Single Inertial-Sensor-Based Attitude Estimation during Walking Using Velocity-Aided Observation.
    Dang DC; Suh YS
    Sensors (Basel); 2021 May; 21(10):. PubMed ID: 34069129
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inertial sensing algorithms for long-term foot angle monitoring for assessment of idiopathic toe-walking.
    Chalmers E; Le J; Sukhdeep D; Watt J; Andersen J; Lou E
    Gait Posture; 2014; 39(1):485-9. PubMed ID: 24050952
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Real Time Estimation of the Pose of a Lower Limb Prosthesis from a Single Shank Mounted IMU.
    Duraffourg C; Bonnet X; Dauriac B; Pillet H
    Sensors (Basel); 2019 Jun; 19(13):. PubMed ID: 31252689
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gait and foot clearance parameters obtained using shoe-worn inertial sensors in a large-population sample of older adults.
    Dadashi F; Mariani B; Rochat S; Büla CJ; Santos-Eggimann B; Aminian K
    Sensors (Basel); 2013 Dec; 14(1):443-57. PubMed ID: 24379049
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Estimation of foot trajectory during human walking by a wearable inertial measurement unit mounted to the foot.
    Kitagawa N; Ogihara N
    Gait Posture; 2016 Mar; 45():110-4. PubMed ID: 26979891
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessment of Foot Trajectory for Human Gait Phase Detection Using Wireless Ultrasonic Sensor Network.
    Qi Y; Soh CB; Gunawan E; Low KS; Thomas R
    IEEE Trans Neural Syst Rehabil Eng; 2016 Jan; 24(1):88-97. PubMed ID: 25769165
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Smoother-Based 3-D Foot Trajectory Estimation Using Inertial Sensors.
    Hao M; Chen K; Fu C
    IEEE Trans Biomed Eng; 2019 Dec; 66(12):3534-3542. PubMed ID: 30932822
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of a Plantar Load Estimation Algorithm for Evaluation of Forefoot Load of Diabetic Patients during Daily Walks Using a Foot Motion Sensor.
    Watanabe A; Noguchi H; Oe M; Sanada H; Mori T
    J Diabetes Res; 2017; 2017():5350616. PubMed ID: 28840130
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Height compensation using ground inclination estimation in inertial sensor-based pedestrian navigation.
    Park SK; Suh YS
    Sensors (Basel); 2011; 11(8):8045-59. PubMed ID: 22164061
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Human Gait Tracking System Using Dual Foot-Mounted IMU and Multiple 2D LiDARs.
    Duong HT; Suh YS
    Sensors (Basel); 2022 Aug; 22(17):. PubMed ID: 36080829
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 2D trajectory estimation during free walking using a tiptoe-mounted inertial sensor.
    Sagawa K; Ohkubo K
    J Biomech; 2015 Jul; 48(10):2054-9. PubMed ID: 25907547
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gated Sensor Fusion: A way to Improve the Precision of Ambulatory Human Body Motion Estimation.
    Olivares A; Górriz JM; Ramírez J; Olivares G
    Stud Health Technol Inform; 2014; 207():37-46. PubMed ID: 25488209
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A preliminary test of measurement of joint angles and stride length with wireless inertial sensors for wearable gait evaluation system.
    Watanabe T; Saito H; Koike E; Nitta K
    Comput Intell Neurosci; 2011; 2011():975193. PubMed ID: 21941531
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Estimation of end point foot clearance points from inertial sensor data.
    Santhiranayagam BK; Lai DT; Begg RK; Palaniswami M
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():6503-6. PubMed ID: 22255828
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.