These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
230 related articles for article (PubMed ID: 25526381)
1. Dispersive Raman spectroscopy and multivariate data analysis to detect offal adulteration of thawed beefburgers. Zhao M; Downey G; O'Donnell CP J Agric Food Chem; 2015 Feb; 63(5):1433-41. PubMed ID: 25526381 [TBL] [Abstract][Full Text] [Related]
2. Detection of adulteration in fresh and frozen beefburger products by beef offal using mid-infrared ATR spectroscopy and multivariate data analysis. Zhao M; Downey G; O'Donnell CP Meat Sci; 2014 Feb; 96(2 Pt A):1003-11. PubMed ID: 24262491 [TBL] [Abstract][Full Text] [Related]
3. Identification of offal adulteration in beef by laser induced breakdown spectroscopy (LIBS). Velioglu HM; Sezer B; Bilge G; Baytur SE; Boyaci IH Meat Sci; 2018 Apr; 138():28-33. PubMed ID: 29289716 [TBL] [Abstract][Full Text] [Related]
4. Application of mid-infrared spectroscopy with multivariate analysis and soft independent modeling of class analogies (SIMCA) for the detection of adulterants in minced beef. Meza-Márquez OG; Gallardo-Velázquez T; Osorio-Revilla G Meat Sci; 2010 Oct; 86(2):511-9. PubMed ID: 20598447 [TBL] [Abstract][Full Text] [Related]
5. Mid-infrared spectroscopy and chemometrics for the authentication of meat products. Al-Jowder O; Defernez M; Kemsley EK; Wilson RH J Agric Food Chem; 1999 Aug; 47(8):3210-8. PubMed ID: 10552633 [TBL] [Abstract][Full Text] [Related]
6. Robust linear and non-linear models of NIR spectroscopy for detection and quantification of adulterants in fresh and frozen-thawed minced beef. Morsy N; Sun DW Meat Sci; 2013 Feb; 93(2):292-302. PubMed ID: 23040181 [TBL] [Abstract][Full Text] [Related]
7. Classification of frankfurters by FT-Raman spectroscopy and chemometric methods. Campos Nda S; Oliveira KS; Almeida MR; Stephani R; de Oliveira LF Molecules; 2014 Nov; 19(11):18980-92. PubMed ID: 25412044 [TBL] [Abstract][Full Text] [Related]
8. Analysis of pork adulteration in beef meatball using Fourier transform infrared (FTIR) spectroscopy. Rohman A; Sismindari ; Erwanto Y; Che Man YB Meat Sci; 2011 May; 88(1):91-5. PubMed ID: 21227596 [TBL] [Abstract][Full Text] [Related]
9. Determination of butter adulteration with margarine using Raman spectroscopy. Uysal RS; Boyaci IH; Genis HE; Tamer U Food Chem; 2013 Dec; 141(4):4397-403. PubMed ID: 23993631 [TBL] [Abstract][Full Text] [Related]
10. A novel method for discrimination of beef and horsemeat using Raman spectroscopy. Boyacı İH; Temiz HT; Uysal RS; Velioğlu HM; Yadegari RJ; Rishkan MM Food Chem; 2014 Apr; 148():37-41. PubMed ID: 24262523 [TBL] [Abstract][Full Text] [Related]
11. Discrimination of milk species using Raman spectroscopy coupled with partial least squares discriminant analysis in raw and pasteurized milk. Yazgan NN; Genis HE; Bulat T; Topcu A; Durna S; Yetisemiyen A; Boyaci IH J Sci Food Agric; 2020 Oct; 100(13):4756-4765. PubMed ID: 32458436 [TBL] [Abstract][Full Text] [Related]
12. Rapid Detection of Adulterants in Whey Protein Supplement by Raman Spectroscopy Combined with Multivariate Analysis. Jiao X; Meng Y; Wang K; Huang W; Li N; Liu TC Molecules; 2019 May; 24(10):. PubMed ID: 31100965 [TBL] [Abstract][Full Text] [Related]
13. Non-targeted detection of milk powder adulteration using Raman spectroscopy and chemometrics: melamine case study. Karunathilaka SR; Farris S; Mossoba MM; Moore JC; Yakes BJ Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2017 Feb; 34(2):170-182. PubMed ID: 27841972 [TBL] [Abstract][Full Text] [Related]
14. Rapid analysis of adulterations in Chinese lotus root powder (LRP) by near-infrared (NIR) spectroscopy coupled with chemometric class modeling techniques. Xu L; Shi PT; Ye ZH; Yan SM; Yu XP Food Chem; 2013 Dec; 141(3):2434-9. PubMed ID: 23870978 [TBL] [Abstract][Full Text] [Related]
15. Simultaneous detection for adulterations of maltodextrin, sodium carbonate, and whey in raw milk using Raman spectroscopy and chemometrics. Tian H; Chen S; Li D; Lou X; Chen C; Yu H J Dairy Sci; 2022 Sep; 105(9):7242-7252. PubMed ID: 35863924 [TBL] [Abstract][Full Text] [Related]
16. Detection and quantification of offal content in ground beef meat using vibrational spectroscopic-based chemometric analysis. Hu Y; Zou L; Huang X; Lu X Sci Rep; 2017 Nov; 7(1):15162. PubMed ID: 29123198 [TBL] [Abstract][Full Text] [Related]
17. Applications of FT-NIRS combined with PLS multivariate methods for the detection & quantification of saccharin adulteration in commercial fruit juices. Mabood F; Hussain J; Jabeen F; Abbas G; Allaham B; Albroumi M; Alghawi S; Alameri S; Gilani SA; Al-Harrasi A; Haq QMI; Farooq S Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2018 Jun; 35(6):1052-1060. PubMed ID: 29659322 [TBL] [Abstract][Full Text] [Related]
18. The employment of FTIR spectroscopy in combination with chemometrics for analysis of rat meat in meatball formulation. Rahmania H; Sudjadi ; Rohman A Meat Sci; 2015 Feb; 100():301-5. PubMed ID: 25460140 [TBL] [Abstract][Full Text] [Related]
19. Identification and quantification of turkey meat adulteration in fresh, frozen-thawed and cooked minced beef by FT-NIR spectroscopy and chemometrics. Alamprese C; Amigo JM; Casiraghi E; Engelsen SB Meat Sci; 2016 Nov; 121():175-181. PubMed ID: 27337677 [TBL] [Abstract][Full Text] [Related]
20. Classification of structurally related commercial contrast media by near infrared spectroscopy. Yip WL; Soosainather TC; Dyrstad K; Sande SA J Pharm Biomed Anal; 2014 Mar; 90():148-60. PubMed ID: 24374816 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]