BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

335 related articles for article (PubMed ID: 25526522)

  • 1. Aggregation-induced emission: a simple strategy to improve chemiluminescence resonance energy transfer.
    Zhang L; He N; Lu C
    Anal Chem; 2015 Jan; 87(2):1351-7. PubMed ID: 25526522
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aggregation-induced chemiluminescence system for sensitive detection of mercury ions.
    Hou Y; Chen Y; Guo X; Liu W; Zhang L; Lv C; Xu Y; Jin Y; Li B
    Anal Bioanal Chem; 2021 Jan; 413(2):625-633. PubMed ID: 33155131
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gold nanoclusters-based chemiluminescence resonance energy transfer method for sensitive and label-free detection of trypsin.
    You X; Li Y; Li B; Ma J
    Talanta; 2016 Jan; 147():63-8. PubMed ID: 26592577
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioprobes based on AIE fluorogens.
    Ding D; Li K; Liu B; Tang BZ
    Acc Chem Res; 2013 Nov; 46(11):2441-53. PubMed ID: 23742638
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Label-free, non-derivatization CRET detection platform for 6-mercaptopurine based on the distance-dependent optical properties of gold nanoparticles.
    Du J; Wang Y; Zhang W
    Chemistry; 2012 Jul; 18(27):8540-6. PubMed ID: 22639371
    [TBL] [Abstract][Full Text] [Related]  

  • 6. AIEgens-based fluorescent covalent organic framework in construction of chemiluminescence resonance energy transfer system for serum uric acid detection.
    Tan H; Li Y
    Mikrochim Acta; 2021 Jul; 188(8):254. PubMed ID: 34264383
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CdSe quantum dots-sensitized chemiluminescence system and quenching effect of gold nanoclusters for cyanide detection.
    Vahid B; Hassanzadeh J; Khodakarami B
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Apr; 212():322-329. PubMed ID: 30669095
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aggregation-Induced Emission Effect within Peroxyoxalate-Loaded Mesoporous Silica Nanoparticles for Efficient Harvest of Chemiluminescence Energy in Aqueous Solutions.
    Fan W; Li L; Yuan J; Ma X; Jia J; Zhang X
    Anal Chem; 2021 Dec; 93(51):17043-17050. PubMed ID: 34907772
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel fluorescent pH sensors and a biological probe based on anthracene derivatives with aggregation-induced emission characteristics.
    Lu H; Xu B; Dong Y; Chen F; Li Y; Li Z; He J; Li H; Tian W
    Langmuir; 2010 May; 26(9):6838-44. PubMed ID: 20112939
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Disordered Assembly of Donors and Acceptors on Layered Double Hydroxides for High-Efficiency Chemiluminescence Resonance Energy Transfer.
    Zhang L; Shi M; Zhou W; Guan W; Lu C
    Anal Chem; 2021 Jun; 93(21):7724-7731. PubMed ID: 34000804
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design and application of anthracene derivative with aggregation-induced emission charateristics for visualization and monitoring of erythropoietin unfolding.
    Sun B; Yang X; Ma L; Niu C; Wang F; Na N; Wen J; Ouyang J
    Langmuir; 2013 Feb; 29(6):1956-62. PubMed ID: 23323829
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single-probe multistate detection of DNA via aggregation-induced emission on a graphene oxide platform.
    Tyagi A; Chu KL; Abidi IH; Cagang AA; Zhang Q; Leung NLC; Zhao E; Tang BZ; Luo Z
    Acta Biomater; 2017 Mar; 50():334-343. PubMed ID: 27940196
    [TBL] [Abstract][Full Text] [Related]  

  • 13. From aggregation-induced emission of Au(I)-thiolate complexes to ultrabright Au(0)@Au(I)-thiolate core-shell nanoclusters.
    Luo Z; Yuan X; Yu Y; Zhang Q; Leong DT; Lee JY; Xie J
    J Am Chem Soc; 2012 Oct; 134(40):16662-70. PubMed ID: 22998450
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Orderly arranged fluorescence dyes as a highly efficient chemiluminescence resonance energy transfer probe for peroxynitrite.
    Wang Z; Teng X; Lu C
    Anal Chem; 2015 Mar; 87(6):3412-8. PubMed ID: 25693881
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nitrogen- and sulfur-doped graphene quantum dots for chemiluminescence.
    Qin X; Zhan Z; Zhang R; Chu K; Whitworth Z; Ding Z
    Nanoscale; 2023 Feb; 15(8):3864-3871. PubMed ID: 36723371
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quenching effect of some heavy metal ions on the fast peroxyoxalate-chemiluminescence of 1-(dansylamidopropyl)-1-aza-4,7,10-trithiacyclododecane as a novel fluorophore.
    Shamsipur M; Zargoosh K; Hosseini SM; Caltagirone C; Lippolis V
    Spectrochim Acta A Mol Biomol Spectrosc; 2009 Sep; 74(1):205-9. PubMed ID: 19570707
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chemiluminescence resonance energy transfer as a simple and sensitive readout mode for a CRISPR/Cas12a-based biosensing platform.
    Zhang Y; Lei J; Liu W; Jin Y; Li B
    Analyst; 2022 Dec; 147(24):5687-5693. PubMed ID: 36420593
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tetrakis(4-pyridylphenyl)ethylene-based Zinc Metal-Organic Framework with Aggregation-Induced Chemiluminescence Emission on a Paper Platform for Formaldehyde Detection in Breath.
    Guo Y; Hou Y; Lv C; Ma X; Yang M; Jin Y; Li B; Liu W
    Anal Chem; 2023 Jan; 95(2):1739-1746. PubMed ID: 36574337
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of Imidazole and Bis(trichlorophenyl) Oxalate in the Oxalyldiimidazole Peroxyoxalate Chemiluminescence Reaction.
    Pontén E; Irgum K
    Anal Chem; 1997 Jun; 69(11):2109-14. PubMed ID: 21639254
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Luminescent metal organic frameworks-based chemiluminescence resonance energy transfer platform for turn-on detection of fluoride ion.
    Sun Y; Xu X; Zhao Y; Tan H; Li Y; Du J
    Talanta; 2020 Mar; 209():120582. PubMed ID: 31892019
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.