These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
232 related articles for article (PubMed ID: 25526650)
1. Effect of warming rate on the critical thermal maxima of crabs, shrimp and fish. Vinagre C; Leal I; Mendonça V; Flores AA J Therm Biol; 2015 Jan; 47():19-25. PubMed ID: 25526650 [TBL] [Abstract][Full Text] [Related]
2. Synergy of environmental variables alters the thermal window and heat shock response: an experimental test with the crab Pachygrapsus marmoratus. Madeira D; Narciso L; Diniz MS; Vinagre C Mar Environ Res; 2014 Jul; 98():21-8. PubMed ID: 24836643 [TBL] [Abstract][Full Text] [Related]
3. Physiological, cellular and biochemical thermal stress response of intertidal shrimps with different vertical distributions: Palaemon elegans and Palaemon serratus. Madeira D; Mendonça V; Dias M; Roma J; Costa PM; Larguinho M; Vinagre C; Diniz MS Comp Biochem Physiol A Mol Integr Physiol; 2015 May; 183():107-15. PubMed ID: 25582544 [TBL] [Abstract][Full Text] [Related]
4. Ocean cleaning stations under a changing climate: biological responses of tropical and temperate fish-cleaner shrimp to global warming. Rosa R; Lopes AR; Pimentel M; Faleiro F; Baptista M; Trübenbach K; Narciso L; Dionísio G; Pegado MR; Repolho T; Calado R; Diniz M Glob Chang Biol; 2014 Oct; 20(10):3068-79. PubMed ID: 24771544 [TBL] [Abstract][Full Text] [Related]
5. Effects of warming rate, acclimation temperature and ontogeny on the critical thermal maximum of temperate marine fish larvae. Moyano M; Candebat C; Ruhbaum Y; Álvarez-Fernández S; Claireaux G; Zambonino-Infante JL; Peck MA PLoS One; 2017; 12(7):e0179928. PubMed ID: 28749960 [TBL] [Abstract][Full Text] [Related]
6. A comparative analysis of the upper thermal tolerance limits of eastern Pacific porcelain crabs, genus Petrolisthes: influences of latitude, vertical zonation, acclimation, and phylogeny. Stillman JH; Somero GN Physiol Biochem Zool; 2000; 73(2):200-8. PubMed ID: 10801398 [TBL] [Abstract][Full Text] [Related]
7. Thermal tolerance and preference of exploited turbinid snails near their range limit in a global warming hotspot. Lah RA; Benkendorff K; Bucher D J Therm Biol; 2017 Feb; 64():100-108. PubMed ID: 28166939 [TBL] [Abstract][Full Text] [Related]
8. Sex-specific thermal tolerance limits in the ditch shrimp Palaemon varians: Eco-evolutionary implications under a warming ocean. Missionário M; Fernandes JF; Travesso M; Freitas E; Calado R; Madeira D J Therm Biol; 2022 Jan; 103():103151. PubMed ID: 35027201 [TBL] [Abstract][Full Text] [Related]
9. Upper thermal tolerance plasticity in tropical amphibian species from contrasting habitats: implications for warming impact prediction. Simon MN; Ribeiro PL; Navas CA J Therm Biol; 2015 Feb; 48():36-44. PubMed ID: 25660628 [TBL] [Abstract][Full Text] [Related]
10. Effects of warming rates on physiological and molecular components of response to CTMax heat stress in the Antarctic fish Harpagifer antarcticus. Saravia J; Paschke K; Oyarzún-Salazar R; Cheng CC; Navarro JM; Vargas-Chacoff L J Therm Biol; 2021 Jul; 99():103021. PubMed ID: 34420652 [TBL] [Abstract][Full Text] [Related]
11. Acclimation and thermal tolerance in Antarctic marine ectotherms. Peck LS; Morley SA; Richard J; Clark MS J Exp Biol; 2014 Jan; 217(Pt 1):16-22. PubMed ID: 24353200 [TBL] [Abstract][Full Text] [Related]
12. The effect of thermal microenvironment in upper thermal tolerance plasticity in tropical tadpoles. Implications for vulnerability to climate warming. Turriago JL; Tejedo M; Hoyos JM; Bernal MH J Exp Zool A Ecol Integr Physiol; 2022 Aug; 337(7):746-759. PubMed ID: 35674344 [TBL] [Abstract][Full Text] [Related]
13. Physiological and molecular responses of juvenile shortnose sturgeon (Acipenser brevirostrum) to thermal stress. Zhang Y; Loughery JR; Martyniuk CJ; Kieffer JD Comp Biochem Physiol A Mol Integr Physiol; 2017 Jan; 203():314-321. PubMed ID: 27777016 [TBL] [Abstract][Full Text] [Related]
14. Limited tolerance by insects to high temperatures across tropical elevational gradients and the implications of global warming for extinction. García-Robledo C; Kuprewicz EK; Staines CL; Erwin TL; Kress WJ Proc Natl Acad Sci U S A; 2016 Jan; 113(3):680-5. PubMed ID: 26729867 [TBL] [Abstract][Full Text] [Related]
15. Microhabitat and body size effects on heat tolerance: implications for responses to climate change (army ants: Formicidae, Ecitoninae). Baudier KM; Mudd AE; Erickson SC; O'Donnell S J Anim Ecol; 2015 Sep; 84(5):1322-30. PubMed ID: 26072696 [TBL] [Abstract][Full Text] [Related]
16. Hyperoxia Does Not Extend Critical Thermal Maxima (CTmax) in White- or Red-Blooded Antarctic Notothenioid Fishes. Devor DP; Kuhn DE; O'Brien KM; Crockett EL Physiol Biochem Zool; 2016; 89(1):1-9. PubMed ID: 27082520 [TBL] [Abstract][Full Text] [Related]
17. Integrating metabolic performance, thermal tolerance, and plasticity enables for more accurate predictions on species vulnerability to acute and chronic effects of global warming. Magozzi S; Calosi P Glob Chang Biol; 2015 Jan; 21(1):181-94. PubMed ID: 25155644 [TBL] [Abstract][Full Text] [Related]
18. High Heat Tolerance Is Negatively Correlated with Heat Tolerance Plasticity in Nudibranch Mollusks. Armstrong EJ; Tanner RL; Stillman JH Physiol Biochem Zool; 2019; 92(4):430-444. PubMed ID: 31192766 [TBL] [Abstract][Full Text] [Related]
19. Do global environmental drivers' ocean acidification and warming exacerbate the effects of oil pollution on the physiological energetics of Scylla serrata? Baag S; Mandal S Environ Sci Pollut Res Int; 2023 Feb; 30(9):23213-23224. PubMed ID: 36318414 [TBL] [Abstract][Full Text] [Related]
20. Maximum thermal limits of coral reef damselfishes are size dependent and resilient to near-future ocean acidification. Clark TD; Roche DG; Binning SA; Speers-Roesch B; Sundin J J Exp Biol; 2017 Oct; 220(Pt 19):3519-3526. PubMed ID: 28754716 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]