BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

296 related articles for article (PubMed ID: 25526694)

  • 1. Carboxymethyl cellulose/silica hybrids as templates for calcium phosphate biomimetic mineralization.
    Salama A; Abou-Zeid RE; El-Sakhawy M; El-Gendy A
    Int J Biol Macromol; 2015 Mar; 74():155-61. PubMed ID: 25526694
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preparation of polyelectrolyte/calcium phosphate hybrids for drug delivery application.
    Salama A; El-Sakhawy M
    Carbohydr Polym; 2014 Nov; 113():500-6. PubMed ID: 25256512
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Carboxymethyl cellulose based hybrid material for sustained release of protein drugs.
    Salama A; El-Sakhawy M; Kamel S
    Int J Biol Macromol; 2016 Dec; 93(Pt B):1647-1652. PubMed ID: 27086298
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis and characterization of N-guanidinium chitosan/silica ionic hybrids as templates for calcium phosphate mineralization.
    Salama A; Hesemann P
    Int J Biol Macromol; 2020 Mar; 147():276-283. PubMed ID: 31917982
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanocomposites of bacterial cellulose/hydroxyapatite for biomedical applications.
    Grande CJ; Torres FG; Gomez CM; Bañó MC
    Acta Biomater; 2009 Jun; 5(5):1605-15. PubMed ID: 19246264
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparation of biocompatible magnetite-carboxymethyl cellulose nanocomposite: characterization of nanocomposite by FTIR, XRD, FESEM and TEM.
    Habibi N
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Oct; 131():55-8. PubMed ID: 24820322
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biomimetic calcium phosphate crystal mineralization on electrospun cellulose-based scaffolds.
    Rodríguez K; Renneckar S; Gatenholm P
    ACS Appl Mater Interfaces; 2011 Mar; 3(3):681-9. PubMed ID: 21355545
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Translation of a solution-based biomineralization concept into a carrier-based delivery system via the use of expanded-pore mesoporous silica.
    Luo XJ; Yang HY; Niu LN; Mao J; Huang C; Pashley DH; Tay FR
    Acta Biomater; 2016 Feb; 31():378-387. PubMed ID: 26657191
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Advanced bioceramic composite for bone tissue engineering: design principles and structure-bioactivity relationship.
    El-Ghannam AR
    J Biomed Mater Res A; 2004 Jun; 69(3):490-501. PubMed ID: 15127396
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of needle-like morphology on the bioactivity of nanocrystalline wollastonite--an in vitro study.
    Lakshmi R; Sasikumar S
    Int J Nanomedicine; 2015; 10 Suppl 1(Suppl 1):129-36. PubMed ID: 26491314
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sol-gel synthesis, structure and bioactivity of polycaprolactone/CaO . SiO2 hybrid material.
    Catauro M; Raucci MG; De Gaetano F; Buri A; Marotta A; Ambrosio L
    J Mater Sci Mater Med; 2004 Sep; 15(9):991-5. PubMed ID: 15448406
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis and electrospinning of ε-polycaprolactone-bioactive glass hybrid biomaterials via a sol-gel process.
    Allo BA; Rizkalla AS; Mequanint K
    Langmuir; 2010 Dec; 26(23):18340-8. PubMed ID: 21050002
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An insight into methylene blue adsorption characteristics onto functionalized alginate bio-polymer gel beads with λ-carrageenan-calcium phosphate, carboxymethyl cellulose, and celite 545.
    Jabli M; Almalki SG; Agougui H
    Int J Biol Macromol; 2020 Aug; 156():1091-1103. PubMed ID: 31756471
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sol-gel processing of drug delivery materials and release kinetics.
    De Gaetano F; Ambrosio L; Raucci MG; Marotta A; Catauro M
    J Mater Sci Mater Med; 2005 Mar; 16(3):261-5. PubMed ID: 15744618
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biomimetic nanocomposites of carboxymethyl cellulose-hydroxyapatite: novel three dimensional load bearing bone grafts.
    Garai S; Sinha A
    Colloids Surf B Biointerfaces; 2014 Mar; 115():182-90. PubMed ID: 24342800
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biosynthesis and in vitro evaluation of macroporous mineralized bacterial nanocellulose scaffolds for bone tissue engineering.
    Sundberg J; Götherström C; Gatenholm P
    Biomed Mater Eng; 2015; 25(1):39-52. PubMed ID: 25585979
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wet powder processing of sol-gel derived mesoporous silica-hydroxyapatite hybrid powders.
    Andersson J; Johannessen E; Areva S; Järn M; Lindén M
    J Nanosci Nanotechnol; 2006 Aug; 6(8):2438-44. PubMed ID: 17037853
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vitro apatite forming ability of type I collagen hydrogels containing bioactive glass and silica sol-gel particles.
    Eglin D; Maalheem S; Livage J; Coradin T
    J Mater Sci Mater Med; 2006 Feb; 17(2):161-7. PubMed ID: 16502249
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Use of experimental-resin-based materials doped with carboxymethyl chitosan and calcium phosphate microfillers to induce biomimetic remineralization of caries-affected dentin.
    Huang Z; Qi Y; Zhang K; Gu L; Guo J; Wang R; Mai S
    J Mech Behav Biomed Mater; 2019 Jan; 89():81-88. PubMed ID: 30265869
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chlorogenic acid/PEG-based organic-inorganic hybrids: A versatile sol-gel synthesis route for new bioactive materials.
    Catauro M; Barrino F; Poggetto GD; Pacifico F; Piccolella S; Pacifico S
    Mater Sci Eng C Mater Biol Appl; 2019 Jul; 100():837-844. PubMed ID: 30948121
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.