BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 25526980)

  • 1. Expression profiling and structural characterization of microRNAs in adipose tissues of hibernating ground squirrels.
    Wu CW; Biggar KK; Storey KB
    Genomics Proteomics Bioinformatics; 2014 Dec; 12(6):284-91. PubMed ID: 25526980
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differential expression of microRNA species in organs of hibernating ground squirrels: a role in translational suppression during torpor.
    Morin P; Dubuc A; Storey KB
    Biochim Biophys Acta; 2008 Oct; 1779(10):628-33. PubMed ID: 18723136
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MicroRNA expression patterns in the brown fat of hibernating 13-lined ground squirrels.
    Logan SM; Storey KB
    Genomics; 2021 Mar; 113(2):769-781. PubMed ID: 33529780
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genomic analysis of miRNAs in an extreme mammalian hibernator, the Arctic ground squirrel.
    Liu Y; Hu W; Wang H; Lu M; Shao C; Menzel C; Yan Z; Li Y; Zhao S; Khaitovich P; Liu M; Chen W; Barnes BM; Yan J
    Physiol Genomics; 2010 Sep; 42A(1):39-51. PubMed ID: 20442247
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of miRNAs modulated by torpor in the hibernating ground squirrel Ictidomys tridecemlineatus liver by next-generation sequencing.
    Morin MD; Lang-Ouellette D; Lyons PJ; Crapoulet N; Morin P
    Cryo Letters; 2017; 38(4):269-277. PubMed ID: 29734428
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential expression of miRNAs with metabolic implications in hibernating thirteen-lined ground squirrels, Ictidomys tridecemlineatus.
    Lang-Ouellette D; Morin P
    Mol Cell Biochem; 2014 Sep; 394(1-2):291-8. PubMed ID: 24874111
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of microRNA expression during the torpor-arousal cycle of a mammalian hibernator, the 13-lined ground squirrel.
    Wu CW; Biggar KK; Luu BE; Szereszewski KE; Storey KB
    Physiol Genomics; 2016 Jun; 48(6):388-96. PubMed ID: 27084747
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigating Nrf2-associated non-coding RNAs in the hibernating ground squirrel, Ictidomys tridecemlineatus.
    Frigault JJ; Gaudet JD; Morin PJ
    J Therm Biol; 2018 Jul; 75():38-44. PubMed ID: 30017050
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential expression of adipose- and heart-type fatty acid binding proteins in hibernating ground squirrels.
    Hittel D; Storey KB
    Biochim Biophys Acta; 2001 Dec; 1522(3):238-43. PubMed ID: 11779641
    [TBL] [Abstract][Full Text] [Related]  

  • 10. HIF-1α regulation in mammalian hibernators: role of non-coding RNA in HIF-1α control during torpor in ground squirrels and bats.
    Maistrovski Y; Biggar KK; Storey KB
    J Comp Physiol B; 2012 Aug; 182(6):849-59. PubMed ID: 22526261
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of Smad mediated microRNA transcriptional response in ground squirrels during hibernation.
    Wu CW; Storey KB
    Mol Cell Biochem; 2018 Feb; 439(1-2):151-161. PubMed ID: 28780752
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Markers of tissue remodeling and inflammation in the white and brown adipose tissues of a model hibernator.
    Logan SM; Storey KB
    Cell Signal; 2021 Jun; 82():109975. PubMed ID: 33711429
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Noradrenaline-induced lipolysis in adipose tissue is suppressed at hibernation temperatures in ground squirrels.
    Dark J; Miller DR; Lewis DA; Fried SK; Bunkin D
    J Neuroendocrinol; 2003 May; 15(5):451-8. PubMed ID: 12694370
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heme oxygenase expression and Nrf2 signaling during hibernation in ground squirrels.
    Ni Z; Storey KB
    Can J Physiol Pharmacol; 2010 Mar; 88(3):379-87. PubMed ID: 20393602
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The impact of cold acclimation and hibernation on antioxidant defenses in the ground squirrel (Spermophilus citellus): an update.
    Vucetic M; Stancic A; Otasevic V; Jankovic A; Korac A; Markelic M; Velickovic K; Golic I; Buzadzic B; Storey KB; Korac B
    Free Radic Biol Med; 2013 Dec; 65():916-924. PubMed ID: 24013092
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Turn down genes for WAT? Activation of anti-apoptosis pathways protects white adipose tissue in metabolically depressed thirteen-lined ground squirrels.
    Logan SM; Luu BE; Storey KB
    Mol Cell Biochem; 2016 May; 416(1-2):47-62. PubMed ID: 27032768
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Global protein conjugation by ubiquitin-like-modifiers during ischemic stress is regulated by microRNAs and confers robust tolerance to ischemia.
    Lee YJ; Johnson KR; Hallenbeck JM
    PLoS One; 2012; 7(10):e47787. PubMed ID: 23094087
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Down but Not Out: The Role of MicroRNAs in Hibernating Bats.
    Yuan L; Geiser F; Lin B; Sun H; Chen J; Zhang S
    PLoS One; 2015; 10(8):e0135064. PubMed ID: 26244645
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Changes in white and brown adipose tissue microRNA expression in cold-induced mice.
    Tao C; Huang S; Wang Y; Wei G; Zhang Y; Qi D; Wang Y; Li K
    Biochem Biophys Res Commun; 2015 Jul; 463(3):193-9. PubMed ID: 25983326
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detection of differential gene expression in brown adipose tissue of hibernating arctic ground squirrels with mouse microarrays.
    Yan J; Burman A; Nichols C; Alila L; Showe LC; Showe MK; Boyer BB; Barnes BM; Marr TG
    Physiol Genomics; 2006 Apr; 25(2):346-53. PubMed ID: 16464973
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.