BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 25527420)

  • 1. The elementary fusion modalities of osteoclasts.
    Søe K; Hobolt-Pedersen AS; Delaisse JM
    Bone; 2015 Apr; 73():181-9. PubMed ID: 25527420
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Osteoclast Fusion: Time-Lapse Reveals Involvement of CD47 and Syncytin-1 at Different Stages of Nuclearity.
    Møller AM; Delaissé JM; Søe K
    J Cell Physiol; 2017 Jun; 232(6):1396-1403. PubMed ID: 27714815
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cyclosporin-A in vitro decreases bone resorption, osteoclast formation, and the fusion of cells of the monocyte-macrophage lineage.
    Orcel P; Denne MA; de Vernejoul MC
    Endocrinology; 1991 Mar; 128(3):1638-46. PubMed ID: 1999178
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification and characterization of the new osteoclast progenitor with macrophage phenotypes being able to differentiate into mature osteoclasts.
    Takeshita S; Kaji K; Kudo A
    J Bone Miner Res; 2000 Aug; 15(8):1477-88. PubMed ID: 10934646
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Colony-stimulating factor-1 stimulates the fusion process in osteoclasts.
    Amano H; Yamada S; Felix R
    J Bone Miner Res; 1998 May; 13(5):846-53. PubMed ID: 9610749
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Osteoclast fusion is based on heterogeneity between fusion partners.
    Hobolt-Pedersen AS; Delaissé JM; Søe K
    Calcif Tissue Int; 2014 Jul; 95(1):73-82. PubMed ID: 24862648
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Involvement of human endogenous retroviral syncytin-1 in human osteoclast fusion.
    Søe K; Andersen TL; Hobolt-Pedersen AS; Bjerregaard B; Larsson LI; Delaissé JM
    Bone; 2011 Apr; 48(4):837-46. PubMed ID: 21111077
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of CD44 deficiency on in vitro and in vivo osteoclast formation.
    de Vries TJ; Schoenmaker T; Beertsen W; van der Neut R; Everts V
    J Cell Biochem; 2005 Apr; 94(5):954-66. PubMed ID: 15578568
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of morphological effects of PGE2 and TGFbeta on osteoclastogenesis induced by RANKL in mouse bone marrow cell cultures.
    Gardner CR
    Cell Tissue Res; 2007 Oct; 330(1):111-21. PubMed ID: 17694327
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bone resorptive activity of osteoclast-like cells generated in vitro by PEG-induced macrophage fusion.
    Murillo A; Guerrero CA; Acosta O; Cardozo CA
    Biol Res; 2010; 43(2):205-24. PubMed ID: 21031266
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biological aspects of altered bone remodeling in multiple myeloma and possibilities of pharmacological intervention.
    Kupisiewicz K
    Dan Med Bull; 2011 May; 58(5):B4277. PubMed ID: 21535989
    [TBL] [Abstract][Full Text] [Related]  

  • 12. v-ATPase V0 subunit d2-deficient mice exhibit impaired osteoclast fusion and increased bone formation.
    Lee SH; Rho J; Jeong D; Sul JY; Kim T; Kim N; Kang JS; Miyamoto T; Suda T; Lee SK; Pignolo RJ; Koczon-Jaremko B; Lorenzo J; Choi Y
    Nat Med; 2006 Dec; 12(12):1403-9. PubMed ID: 17128270
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unsatisfactory gene transfer into bone-resorbing osteoclasts with liposomal transfection systems.
    Laitala-Leinonen T
    J Negat Results Biomed; 2005 Aug; 4():5. PubMed ID: 16124882
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fibronectin inhibits osteoclastogenesis while enhancing osteoclast activity via nitric oxide and interleukin-1β-mediated signaling pathways.
    Gramoun A; Azizi N; Sodek J; Heersche JN; Nakchbandi I; Manolson MF
    J Cell Biochem; 2010 Nov; 111(4):1020-34. PubMed ID: 20672308
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transmigration: a new property of mature multinucleated osteoclasts.
    Saltel F; Chabadel A; Zhao Y; Lafage-Proust MH; Clézardin P; Jurdic P; Bonnelye E
    J Bone Miner Res; 2006 Dec; 21(12):1913-23. PubMed ID: 17002556
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Formation of multinucleated cells that respond to osteotropic hormones in long term human bone marrow cultures.
    MacDonald BR; Takahashi N; McManus LM; Holahan J; Mundy GR; Roodman GD
    Endocrinology; 1987 Jun; 120(6):2326-33. PubMed ID: 3569133
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of a monoclonal antibody to osteoclasts formed in vitro which recognizes mononuclear osteoclast precursors in the marrow.
    Kukita T; Roodman GD
    Endocrinology; 1989 Aug; 125(2):630-7. PubMed ID: 2752970
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transcriptionally active nuclei are selective in mature multinucleated osteoclasts.
    Youn MY; Takada I; Imai Y; Yasuda H; Kato S
    Genes Cells; 2010 Oct; 15(10):1025-35. PubMed ID: 20831632
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Microcinematographic study of in vitro fusion between blood monocytes and differentiated osteoclasts].
    Zambonin Zallone A; Teti A; Primavera MV
    Boll Soc Ital Biol Sper; 1983 Dec; 59(12):1959-65. PubMed ID: 6671054
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of ionizing irradiation on formation and resorbing activity of osteoclasts in vitro.
    Scheven BA; Burger EH; Kawilarang-de Haas EW; Wassenaar AM; Nijweide PJ
    Lab Invest; 1985 Jul; 53(1):72-9. PubMed ID: 4010232
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.