BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 25527839)

  • 1. The bimodal distribution of genic GC content is ancestral to monocot species.
    Clément Y; Fustier MA; Nabholz B; Glémin S
    Genome Biol Evol; 2014 Dec; 7(1):336-48. PubMed ID: 25527839
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Codon usage and codon pair patterns in non-grass monocot genomes.
    Mazumdar P; Binti Othman R; Mebus K; Ramakrishnan N; Ann Harikrishna J
    Ann Bot; 2017 Nov; 120(6):893-909. PubMed ID: 29155926
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Can GC content at third-codon positions be used as a proxy for isochore composition?
    Elhaik E; Landan G; Graur D
    Mol Biol Evol; 2009 Aug; 26(8):1829-33. PubMed ID: 19443854
    [TBL] [Abstract][Full Text] [Related]  

  • 4. GC-biased gene conversion and selection affect GC content in the Oryza genus (rice).
    Muyle A; Serres-Giardi L; Ressayre A; Escobar J; Glémin S
    Mol Biol Evol; 2011 Sep; 28(9):2695-706. PubMed ID: 21504892
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cross-species analysis of genic GC3 content and DNA methylation patterns.
    Tatarinova T; Elhaik E; Pellegrini M
    Genome Biol Evol; 2013; 5(8):1443-56. PubMed ID: 23833164
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nucleotide substitution pattern in rice paralogues: implication for negative correlation between the synonymous substitution rate and codon usage bias.
    Shi X; Wang X; Li Z; Zhu Q; Tang W; Ge S; Luo J
    Gene; 2006 Jul; 376(2):199-206. PubMed ID: 16644142
    [TBL] [Abstract][Full Text] [Related]  

  • 7. GC3 biology in corn, rice, sorghum and other grasses.
    Tatarinova TV; Alexandrov NN; Bouck JB; Feldmann KA
    BMC Genomics; 2010 May; 11():308. PubMed ID: 20470436
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biased gene conversion and GC-content evolution in the coding sequences of reptiles and vertebrates.
    Figuet E; Ballenghien M; Romiguier J; Galtier N
    Genome Biol Evol; 2014 Dec; 7(1):240-50. PubMed ID: 25527834
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evidence of selectively driven codon usage in rice: implications for GC content evolution of Gramineae genes.
    Guo X; Bao J; Fan L
    FEBS Lett; 2007 Mar; 581(5):1015-21. PubMed ID: 17306258
    [TBL] [Abstract][Full Text] [Related]  

  • 10. GC content evolution in coding regions of angiosperm genomes: a unifying hypothesis.
    Glémin S; Clément Y; David J; Ressayre A
    Trends Genet; 2014 Jul; 30(7):263-70. PubMed ID: 24916172
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nonneutral GC3 and retroelement codon mimicry in Phytophthora.
    Jiang RH; Govers F
    J Mol Evol; 2006 Oct; 63(4):458-72. PubMed ID: 16955239
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative relationship between synonymous codon usage bias and GC composition across unicellular genomes.
    Wan XF; Xu D; Kleinhofs A; Zhou J
    BMC Evol Biol; 2004 Jun; 4():19. PubMed ID: 15222899
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intra-genomic GC heterogeneity in sauropsids: evolutionary insights from cDNA mapping and GC(3) profiling in snake.
    Matsubara K; Kuraku S; Tarui H; Nishimura O; Nishida C; Agata K; Kumazawa Y; Matsuda Y
    BMC Genomics; 2012 Nov; 13():604. PubMed ID: 23140509
    [TBL] [Abstract][Full Text] [Related]  

  • 14. GC content of plant genes is linked to past gene duplications.
    Bowers JE; Tang H; Burke JM; Paterson AH
    PLoS One; 2022; 17(1):e0261748. PubMed ID: 35025913
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative transcriptomics of three Poaceae species reveals patterns of gene expression evolution.
    Davidson RM; Gowda M; Moghe G; Lin H; Vaillancourt B; Shiu SH; Jiang N; Robin Buell C
    Plant J; 2012 Aug; 71(3):492-502. PubMed ID: 22443345
    [TBL] [Abstract][Full Text] [Related]  

  • 16. GC3 of genes can be used as a proxy for isochore base composition: a reply to Elhaik et al.
    Clay OK; Bernardi G
    Mol Biol Evol; 2011 Jan; 28(1):21-3. PubMed ID: 20817719
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Complete sequence of the maize chloroplast genome: gene content, hotspots of divergence and fine tuning of genetic information by transcript editing.
    Maier RM; Neckermann K; Igloi GL; Kössel H
    J Mol Biol; 1995 Sep; 251(5):614-28. PubMed ID: 7666415
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sixty million years in evolution of soft grain trait in grasses: emergence of the softness locus in the common ancestor of Pooideae and Ehrhartoideae, after their divergence from Panicoideae.
    Charles M; Tang H; Belcram H; Paterson A; Gornicki P; Chalhoub B
    Mol Biol Evol; 2009 Jul; 26(7):1651-61. PubMed ID: 19395588
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Compositional gradients in Gramineae genes.
    Wong GK; Wang J; Tao L; Tan J; Zhang J; Passey DA; Yu J
    Genome Res; 2002 Jun; 12(6):851-6. PubMed ID: 12045139
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Hybaid Lecture. Microcollinearity and segmental duplication in the evolution of grass nuclear genomes.
    Bennetzen JL; SanMiguel P; Liu CN; Chen M; Tikhonov A; Costa de Oliveira A; Jin YK; Avramova Z; Woo SS; Zhang H; Wing RA
    Symp Soc Exp Biol; 1996; 50():1-3. PubMed ID: 9039427
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.