These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 25527928)

  • 41. Ion gels by self-assembly of a triblock copolymer in an ionic liquid.
    He Y; Boswell PG; Bühlmann P; Lodge TP
    J Phys Chem B; 2007 May; 111(18):4645-52. PubMed ID: 17474692
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Continuous flow structuring of anisotropic biopolymer particles.
    Erni P; Cramer C; Marti I; Windhab EJ; Fischer P
    Adv Colloid Interface Sci; 2009 Aug; 150(1):16-26. PubMed ID: 19481192
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Elucidation of gelation mechanism and molecular interactions of agarose in solution by 1H NMR.
    Dai B; Matsukawa S
    Carbohydr Res; 2013 Jan; 365():38-45. PubMed ID: 23202536
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Effect of hydrophilic and hydrophobic interactions on the rheological behavior and microstructure of a ternary cellulose acetate system.
    Kadla JF; Korehei R
    Biomacromolecules; 2010 Apr; 11(4):1074-81. PubMed ID: 20235573
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Structure formation in sugar containing pectin gels - influence of tartaric acid content (pH) and cooling rate on the gelation of high-methoxylated pectin.
    Kastner H; Kern K; Wilde R; Berthold A; Einhorn-Stoll U; Drusch S
    Food Chem; 2014 Feb; 144():44-9. PubMed ID: 24099540
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Rheological, mucoadhesive and release properties of Carbopol gels in hydrophilic cosolvents.
    Bonacucina G; Martelli S; Palmieri GF
    Int J Pharm; 2004 Sep; 282(1-2):115-30. PubMed ID: 15336387
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Equivalent pathways in melting and gelation of well-defined biopolymer networks.
    Cingil HE; Rombouts WH; van der Gucht J; Cohen Stuart MA; Sprakel J
    Biomacromolecules; 2015 Jan; 16(1):304-10. PubMed ID: 25397912
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Viscoelastic properties of human tracheobronchial mucin in aqueous solution.
    McCullagh CM; Jamieson AM; Blackwell J; Gupta R
    Biopolymers; 1995 Feb; 35(2):149-59. PubMed ID: 7696561
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Small angle neutron scattering studies of structural characteristics of agarose gels.
    Krueger S; Andrews AP; Nossal R
    Biophys Chem; 1994 Dec; 53(1-2):85-94. PubMed ID: 7841333
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Microrheology of a thermosensitive gelling polymer for cell culture.
    Buzzaccaro S; Ruzzi V; Faleo T; Piazza R
    J Chem Phys; 2022 Nov; 157(17):174901. PubMed ID: 36347677
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Two-point microrheology of inhomogeneous soft materials.
    Crocker JC; Valentine MT; Weeks ER; Gisler T; Kaplan PD; Yodh AG; Weitz DA
    Phys Rev Lett; 2000 Jul; 85(4):888-91. PubMed ID: 10991424
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Preparation of gold nanoparticles-agarose gel composite and its application in SERS detection.
    Ma X; Xia Y; Ni L; Song L; Wang Z
    Spectrochim Acta A Mol Biomol Spectrosc; 2014; 121():657-61. PubMed ID: 24368285
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Unique gelation behavior of cellulose in NaOH/urea aqueous solution.
    Cai J; Zhang L
    Biomacromolecules; 2006 Jan; 7(1):183-9. PubMed ID: 16398514
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Micellar casein gelation at high sucrose content.
    Schorsch C; Jones MG; Norton IT
    J Dairy Sci; 2002 Dec; 85(12):3155-63. PubMed ID: 12512588
    [TBL] [Abstract][Full Text] [Related]  

  • 55. On the kinetics of acid sodium caseinate gelation using particle tracking to probe the microrheology.
    Moschakis T; Murray BS; Dickinson E
    J Colloid Interface Sci; 2010 May; 345(2):278-85. PubMed ID: 20223466
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Rheology of nanocrystalline cellulose aqueous suspensions.
    Shafiei-Sabet S; Hamad WY; Hatzikiriakos SG
    Langmuir; 2012 Dec; 28(49):17124-33. PubMed ID: 23146090
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Aggregation and gelation of micellar casein particles.
    Panouillé M; Durand D; Nicolai T; Larquet E; Boisset N
    J Colloid Interface Sci; 2005 Jul; 287(1):85-93. PubMed ID: 15914152
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Influence of ultrasound on chemically induced gelation of micellar casein systems.
    Chandrapala J; Zisu B; Kentish S; Ashokkumar M
    J Dairy Res; 2013 May; 80(2):138-43. PubMed ID: 23328199
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Influence of substitution on the rheological properties and gelation of hydroxyethyl cellulose solution in NaOH-water solvent.
    Wang W; Li F; Yu J; Navard P; Budtova T
    Carbohydr Polym; 2015 Jun; 124():85-9. PubMed ID: 25839797
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Rheological and dielectric characterization of monoolein/water mesophases in the presence of a peptide drug.
    Bonacucina G; Palmieri GF; Craig DQ
    J Pharm Sci; 2005 Nov; 94(11):2452-62. PubMed ID: 16200546
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.