These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
246 related articles for article (PubMed ID: 25527943)
1. Finite-size scaling study of shear viscosity anomaly at liquid-liquid criticality. Roy S; Das SK J Chem Phys; 2014 Dec; 141(23):234502. PubMed ID: 25527943 [TBL] [Abstract][Full Text] [Related]
2. Study of critical dynamics in fluids via molecular dynamics in canonical ensemble. Roy S; Das SK Eur Phys J E Soft Matter; 2015 Dec; 38(12):132. PubMed ID: 26687057 [TBL] [Abstract][Full Text] [Related]
3. Static and dynamic critical behavior of a symmetrical binary fluid: a computer simulation. Das SK; Horbach J; Binder K; Fisher ME; Sengers JV J Chem Phys; 2006 Jul; 125(2):24506. PubMed ID: 16848591 [TBL] [Abstract][Full Text] [Related]
4. Critical dynamics in a binary fluid: simulations and finite-size scaling. Das SK; Fisher ME; Sengers JV; Horbach J; Binder K Phys Rev Lett; 2006 Jul; 97(2):025702. PubMed ID: 16907461 [TBL] [Abstract][Full Text] [Related]
5. Implementations of Nosé-Hoover and Nosé-Poincaré thermostats in mesoscopic dynamic simulations with the united-residue model of a polypeptide chain. Kleinerman DS; Czaplewski C; Liwo A; Scheraga HA J Chem Phys; 2008 Jun; 128(24):245103. PubMed ID: 18601387 [TBL] [Abstract][Full Text] [Related]
6. Molecular simulation of the phase behavior of fluids and fluid mixtures using the synthetic method. Sadus RJ J Chem Phys; 2012 Aug; 137(5):054507. PubMed ID: 22894364 [TBL] [Abstract][Full Text] [Related]
7. Galilean-invariant Nosé-Hoover-type thermostats. Pieprzyk S; Heyes DM; Maćkowiak S; Brańka AC Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Mar; 91(3):033312. PubMed ID: 25871251 [TBL] [Abstract][Full Text] [Related]
8. On the use of a weak-coupling thermostat in replica-exchange molecular dynamics simulations. Lin Z; van Gunsteren WF J Chem Phys; 2015 Jul; 143(3):034110. PubMed ID: 26203017 [TBL] [Abstract][Full Text] [Related]
9. Finite-size scaling study of dynamic critical phenomena in a vapor-liquid transition. Midya J; Das SK J Chem Phys; 2017 Jan; 146(4):044503. PubMed ID: 28147549 [TBL] [Abstract][Full Text] [Related]
10. Effects of Temperature Control Algorithms on Transport Properties and Kinetics in Molecular Dynamics Simulations. Basconi JE; Shirts MR J Chem Theory Comput; 2013 Jul; 9(7):2887-99. PubMed ID: 26583973 [TBL] [Abstract][Full Text] [Related]
11. Microcanonical finite-size scaling in second-order phase transitions with diverging specific heat. Fernandez LA; Gordillo-Guerrero A; Martin-Mayor V; Ruiz-Lorenzo JJ Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Nov; 80(5 Pt 1):051105. PubMed ID: 20364945 [TBL] [Abstract][Full Text] [Related]
12. Simulation of transport around the coexistence region of a binary fluid. Roy S; Das SK J Chem Phys; 2013 Aug; 139(6):064505. PubMed ID: 23947869 [TBL] [Abstract][Full Text] [Related]
13. Computer simulation of polymer networks: swelling by binary Lennard-Jones mixtures. Oyen E; Hentschke R J Chem Phys; 2005 Aug; 123(5):054902. PubMed ID: 16108688 [TBL] [Abstract][Full Text] [Related]
16. Mass dependence of shear viscosity in a binary fluid mixture: mode-coupling theory. Ali SM; Samanta A; Choudhury N; Ghosh SK Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Nov; 74(5 Pt 1):051201. PubMed ID: 17279895 [TBL] [Abstract][Full Text] [Related]
17. From molecular dynamics to hydrodynamics: a novel Galilean invariant thermostat. Stoyanov SD; Groot RD J Chem Phys; 2005 Mar; 122(11):114112. PubMed ID: 15836206 [TBL] [Abstract][Full Text] [Related]
18. Continuous demixing at liquid-vapor coexistence in a symmetrical binary fluid mixture. Wilding NB Phys Rev E Stat Nonlin Soft Matter Phys; 2003 May; 67(5 Pt 1):052503. PubMed ID: 12786203 [TBL] [Abstract][Full Text] [Related]
19. Dynamics of fluids near the consolute critical point: a molecular-dynamics study of the Widom-Rowlinson mixture. Jagannathan K; Yethiraj A J Chem Phys; 2005 Jun; 122(24):244506. PubMed ID: 16035781 [TBL] [Abstract][Full Text] [Related]
20. Statistical-mechanical theory of rheology: Lennard-Jones fluids. Laghaei R; Eskandari Nasrabad A; Eu BC J Chem Phys; 2005 Dec; 123(23):234507. PubMed ID: 16392931 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]