These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 25527977)

  • 1. Raman imaging of pharmaceutical materials: refractive index effects on contrast at buried interfaces.
    Mecker-Pogue LC; Kauffman JF
    J Pharm Biomed Anal; 2015 Feb; 105():17-23. PubMed ID: 25527977
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chemical imaging of pharmaceutical materials: fabrication of micropatterned resolution targets.
    Kauffman JF; Gilliam SJ; Martin RS
    Anal Chem; 2008 Aug; 80(15):5706-12. PubMed ID: 18576670
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Zeta potentials of PDMS surfaces modified with poly(ethylene glycol) by physisorption.
    Song Y; Feng A; Liu Z; Li D
    Electrophoresis; 2020 Jun; 41(10-11):761-768. PubMed ID: 31475365
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A simple method for fabricating patterned curvilinear microstructures in poly(dimethylsiloxane) by selective wetting.
    Ke X; Tang J
    Chemphyschem; 2013 Apr; 14(5):946-51. PubMed ID: 23436571
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stability of Polyethylene Glycol and Zwitterionic Surface Modifications in PDMS Microfluidic Flow Chambers.
    Plegue TJ; Kovach KM; Thompson AJ; Potkay JA
    Langmuir; 2018 Jan; 34(1):492-502. PubMed ID: 29231737
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Significantly improved cell affinity of polydimethylsiloxane enabled by a surface-modified strategy with chemical coupling.
    Rao L; Liu Y; Zhou H
    J Mater Sci Mater Med; 2022 Sep; 33(10):66. PubMed ID: 36138160
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hollow polydimethylsiloxane beads with a porous structure for cell encapsulation.
    Oh MJ; Ryu TK; Choi SW
    Macromol Rapid Commun; 2013 Nov; 34(21):1728-33. PubMed ID: 24123479
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Defining a strategy for chemical imaging of industrial pharmaceutical samples on Raman line-mapping and global illumination instruments.
    Sasić S; Clark DA
    Appl Spectrosc; 2006 May; 60(5):494-502. PubMed ID: 16756700
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solution-phase surface modification in intact poly(dimethylsiloxane) microfluidic channels.
    Sui G; Wang J; Lee CC; Lu W; Lee SP; Leyton JV; Wu AM; Tseng HR
    Anal Chem; 2006 Aug; 78(15):5543-51. PubMed ID: 16878894
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative Raman spectroscopy in turbid matter: reflection or transmission mode?
    Oelkrug D; Ostertag E; Kessler RW
    Anal Bioanal Chem; 2013 Apr; 405(10):3367-79. PubMed ID: 23397087
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Light sheet direct Raman imaging technique for observation of mixing of solvents.
    Oshima Y; Furihata C; Sato H
    Appl Spectrosc; 2009 Oct; 63(10):1115-20. PubMed ID: 19843361
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Red-excitation dispersive Raman spectroscopy is a suitable technique for solid-state analysis of respirable pharmaceutical powders.
    Vehring R
    Appl Spectrosc; 2005 Mar; 59(3):286-92. PubMed ID: 15901308
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of different chemometric methods to extract chemical and physical information from Raman images of homogeneous and heterogeneous semi-solid pharmaceutical formulations.
    Mitsutake H; Castro SR; de Paula E; Poppi RJ; Rutledge DN; Breitkreitz MC
    Int J Pharm; 2018 Dec; 552(1-2):119-129. PubMed ID: 30266516
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Raman chemical imaging for ingredient-specific particle size characterization of aqueous suspension nasal spray formulations: a progress report.
    Doub WH; Adams WP; Spencer JA; Buhse LF; Nelson MP; Treado PJ
    Pharm Res; 2007 May; 24(5):934-45. PubMed ID: 17372686
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Principles and applications of Raman spectroscopy in pharmaceutical drug discovery and development.
    Gala U; Chauhan H
    Expert Opin Drug Discov; 2015 Feb; 10(2):187-206. PubMed ID: 25399993
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crack-free polydimethylsiloxane-bioactive glass-poly(ethylene glycol) hybrid monoliths with controlled biomineralization activity and mechanical property for bone tissue regeneration.
    Chen J; Du Y; Que W; Xing Y; Chen X; Lei B
    Colloids Surf B Biointerfaces; 2015 Dec; 136():126-33. PubMed ID: 26381696
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Raman scattering studies on PEG functionalized hydroxyapatite nanoparticles.
    Yamini D; Devanand Venkatasubbu G; Kumar J; Ramakrishnan V
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Jan; 117():299-303. PubMed ID: 23998962
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Environmentally friendly surface modification of PDMS using PEG polymer brush.
    Zhang Z; Feng X; Luo Q; Liu BF
    Electrophoresis; 2009 Sep; 30(18):3174-80. PubMed ID: 19722209
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of sampling techniques for in-line monitoring using Raman spectroscopy.
    Wikström H; Lewis IR; Taylor LS
    Appl Spectrosc; 2005 Jul; 59(7):934-41. PubMed ID: 16053566
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis, permeability and biocompatibility of tricomponent membranes containing polyethylene glycol, polydimethylsiloxane and polypentamethylcyclopentasiloxane domains.
    Kurian P; Kasibhatla B; Daum J; Burns CA; Moosa M; Rosenthal KS; Kennedy JP
    Biomaterials; 2003 Sep; 24(20):3493-503. PubMed ID: 12809778
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.