BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 25528111)

  • 1. Visualization of neurotransmitter uptake and release in serotonergic neurons.
    Lau T; Proissl V; Ziegler J; Schloss P
    J Neurosci Methods; 2015 Feb; 241():10-7. PubMed ID: 25528111
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Methyl-4-phenylpyridinium (MPP+) differentially affects monoamine release and re-uptake in murine embryonic stem cell-derived dopaminergic and serotonergic neurons.
    Martí Y; Matthaeus F; Lau T; Schloss P
    Mol Cell Neurosci; 2017 Sep; 83():37-45. PubMed ID: 28673772
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Somatodendritic serotonin release and re-uptake in mouse embryonic stem cell-derived serotonergic neurons.
    Lau T; Schneidt T; Heimann F; Gundelfinger ED; Schloss P
    Neurochem Int; 2010 Dec; 57(8):969-78. PubMed ID: 20959132
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural basis for serotonergic regulation of neural circuits in the mouse olfactory bulb.
    Suzuki Y; Kiyokage E; Sohn J; Hioki H; Toida K
    J Comp Neurol; 2015 Feb; 523(2):262-80. PubMed ID: 25234191
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential Uptake Mechanisms of Fluorescent Substrates into Stem-Cell-Derived Serotonergic Neurons.
    Matthaeus F; Schloss P; Lau T
    ACS Chem Neurosci; 2015 Dec; 6(12):1906-12. PubMed ID: 26503837
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nonexocytotic serotonin release tonically suppresses serotonergic neuron activity.
    Mlinar B; Montalbano A; Baccini G; Tatini F; Berlinguer Palmini R; Corradetti R
    J Gen Physiol; 2015 Mar; 145(3):225-51. PubMed ID: 25712017
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nuclear organization of the serotonergic system in the brain of the rock cavy (Kerodon rupestris).
    Soares JG; Cavalcanti JR; Oliveira FG; Pontes AL; Sousa TB; Freitas LM; Cavalcante JS; Nascimento ES; Cavalcante JC; Costa MS
    J Chem Neuroanat; 2012 Mar; 43(2):112-9. PubMed ID: 22464977
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nongenomic, glucocorticoid receptor-mediated regulation of serotonin transporter cell surface expression in embryonic stem cell derived serotonergic neurons.
    Lau T; Heimann F; Bartsch D; Schloss P; Weber T
    Neurosci Lett; 2013 Oct; 554():115-20. PubMed ID: 24021805
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of rat rostral raphe primary cultures: multiplex quantification of serotonergic markers.
    Czesak M; Burns AM; Remes Lenicov F; Albert PR
    J Neurosci Methods; 2007 Aug; 164(1):59-67. PubMed ID: 17498810
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Toward Serotonin Fluorescent False Neurotransmitters: Development of Fluorescent Dual Serotonin and Vesicular Monoamine Transporter Substrates for Visualizing Serotonin Neurons.
    Henke A; Kovalyova Y; Dunn M; Dreier D; Gubernator NG; Dincheva I; Hwu C; Šebej P; Ansorge MS; Sulzer D; Sames D
    ACS Chem Neurosci; 2018 May; 9(5):925-934. PubMed ID: 29281252
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A simplified method to generate serotonergic neurons from mouse embryonic stem and induced pluripotent stem cells.
    Shimada T; Takai Y; Shinohara K; Yamasaki A; Tominaga-Yoshino K; Ogura A; Toi A; Asano K; Shintani N; Hayata-Takano A; Baba A; Hashimoto H
    J Neurochem; 2012 Jul; 122(1):81-93. PubMed ID: 22404309
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adenoviral vectors for highly selective gene expression in central serotonergic neurons reveal quantal characteristics of serotonin release in the rat brain.
    Benzekhroufa K; Liu B; Tang F; Teschemacher AG; Kasparov S
    BMC Biotechnol; 2009 Mar; 9():23. PubMed ID: 19298646
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimized derivation and functional characterization of 5-HT neurons from human embryonic stem cells.
    Kumar M; Kaushalya SK; Gressens P; Maiti S; Mani S
    Stem Cells Dev; 2009 May; 18(4):615-27. PubMed ID: 18800863
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chronic activation of the 5-HT(2) receptor reduces 5-HT neurite density as studied in organotypic slice cultures.
    Dudok JJ; Groffen AJ; Witter MP; Voorn P; Verhage M
    Brain Res; 2009 Dec; 1302():1-9. PubMed ID: 19728996
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of raphe serotonin neurons from specification to guidance.
    Kiyasova V; Gaspar P
    Eur J Neurosci; 2011 Nov; 34(10):1553-62. PubMed ID: 22103413
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Tph2
    Pacini G; Marino A; Migliarini S; Brilli E; Pelosi B; Maddaloni G; Pratelli M; Pellegrino M; Ferrari A; Pasqualetti M
    ACS Chem Neurosci; 2017 May; 8(5):1043-1052. PubMed ID: 28029782
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Specification and differentiation of serotonergic neurons.
    Alenina N; Bashammakh S; Bader M
    Stem Cell Rev; 2006; 2(1):5-10. PubMed ID: 17142880
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Serotonin uptake and release mechanisms in developing cultures of rat embryonic raphe neurons: age- and region-specific differences.
    Lautenschlager M; Höltje M; von Jagow B; Veh RW; Harms C; Bergk A; Dirnagl U; Ahnert-Hilger G; Hörtnagl H
    Neuroscience; 2000; 99(3):519-27. PubMed ID: 11029543
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Serotonin transport and serotonin transporter-mediated antidepressant recognition are controlled by 5-HT2B receptor signaling in serotonergic neuronal cells.
    Launay JM; Schneider B; Loric S; Da Prada M; Kellermann O
    FASEB J; 2006 Sep; 20(11):1843-54. PubMed ID: 16940156
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Development of serotonergic neurons of dorsal raphe nuclei in mice with knockout of monoamine oxidase A and 5-HT1A and 5-HT1B autoreceptor].
    Urtikova NA; Sapronova AIa; Brisorgueil MJ; Verge D; Ugriumov MV
    Ontogenez; 2009; 40(4):270-81. PubMed ID: 19705758
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.