These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

312 related articles for article (PubMed ID: 25528134)

  • 1. Modeling improved ISCO treatment of low permeable zones via viscosity modification: assessment of system variables.
    Kananizadeh N; Chokejaroenrat C; Li Y; Comfort S
    J Contam Hydrol; 2015 Feb; 173():25-37. PubMed ID: 25528134
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improving the treatment of non-aqueous phase TCE in low permeability zones with permanganate.
    Chokejaroenrat C; Comfort S; Sakulthaew C; Dvorak B
    J Hazard Mater; 2014 Mar; 268():177-84. PubMed ID: 24491441
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improving the sweeping efficiency of permanganate into low permeable zones to treat TCE: experimental results and model development.
    Chokejaroenrat C; Kananizadeh N; Sakulthaew C; Comfort S; Li Y
    Environ Sci Technol; 2013 Nov; 47(22):13031-8. PubMed ID: 24168321
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Field demonstration of polymer-amended in situ chemical oxidation (PA-ISCO).
    Silva JA; Crimi M; Palaia T; Ko S; Davenport S
    J Contam Hydrol; 2017 Apr; 199():36-49. PubMed ID: 28341384
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Remediation of TCE-contaminated groundwater using KMnO
    Yang ZH; Ou JH; Dong CD; Chen CW; Lin WH; Kao CM
    Environ Sci Pollut Res Int; 2019 Nov; 26(33):34027-34038. PubMed ID: 30232775
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of KMnO(4)-releasing composites for in situ chemical oxidation of TCE-contaminated groundwater.
    Liang SH; Chen KF; Wu CS; Lin YH; Kao CM
    Water Res; 2014 May; 54():149-58. PubMed ID: 24568784
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced remedial amendment delivery through fluid viscosity modifications: experiments and numerical simulations.
    Zhong L; Oostrom M; Wietsma TW; Covert MA
    J Contam Hydrol; 2008 Oct; 101(1-4):29-41. PubMed ID: 18786743
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oxidation of trichloroethylene, toluene, and ethanol vapors by a partially saturated permeable reactive barrier.
    Mahmoodlu MG; Hassanizadeh SM; Hartog N; Raoof A
    J Contam Hydrol; 2014 Aug; 164():193-208. PubMed ID: 24992709
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact of injection system design on ISCO performance with permanganate--mathematical modeling results.
    Cha KY; Borden RC
    J Contam Hydrol; 2012 Feb; 128(1-4):33-46. PubMed ID: 22192343
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In situ stabilization of NAPL contaminant source-zones as a remediation technique to reduce mass discharge and flux to groundwater.
    Mateas DJ; Tick GR; Carroll KC
    J Contam Hydrol; 2017 Sep; 204():40-56. PubMed ID: 28780996
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Injectable silica-permanganate gel as a slow-release MnO4(-) source for groundwater remediation: rheological properties and release dynamics.
    Yang S; Oostrom M; Truex MJ; Li G; Zhong L
    Environ Sci Process Impacts; 2016 Feb; 18(2):256-64. PubMed ID: 26766607
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Compatibility of polymers and chemical oxidants for enhanced groundwater remediation.
    Smith MM; Silva JA; Munakata-Marr J; McCray JE
    Environ Sci Technol; 2008 Dec; 42(24):9296-301. PubMed ID: 19174907
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Using slow-release permanganate candles to remove TCE from a low permeable aquifer at a former landfill.
    Christenson MD; Kambhu A; Comfort SD
    Chemosphere; 2012 Oct; 89(6):680-7. PubMed ID: 22784864
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrokinetic-enhanced permanganate delivery and remediation of contaminated low permeability porous media.
    Chowdhury AIA; Gerhard JI; Reynolds D; Sleep BE; O'Carroll DM
    Water Res; 2017 Apr; 113():215-222. PubMed ID: 28214394
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimental study of viscosity modification coupled with phase transfer catalysis for enhanced remediation of non-aqueous phase trichloroethene polluted heterogeneous aquifer.
    Zhang M; Dong J; Sun M; Jiang D; Sun C; Li X; Offiong NO
    J Hazard Mater; 2022 May; 430():128452. PubMed ID: 35168099
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Real-time monitoring of in situ chemical oxidation (ISCO) of dissolved TCE by integrating electrical resistivity tomography and reactive transport modeling.
    Han Z; Kang X; Singha K; Wu J; Shi X
    Water Res; 2024 Mar; 252():121195. PubMed ID: 38290236
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of potassium permanganate as an oxidant for in situ oxidation of trichloroethylene-contaminated groundwater: a laboratory and kinetics study.
    Kao CM; Huang KD; Wang JY; Chen TY; Chien HY
    J Hazard Mater; 2008 May; 153(3):919-27. PubMed ID: 18006224
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The principle and effect of transfer agent for the removal of PCE during in situ chemical oxidation.
    Liu Y; Chen J; Wang Q; Shi L; Shi Y
    Environ Sci Pollut Res Int; 2017 Sep; 24(26):21011-21023. PubMed ID: 28726225
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigation of the compatibility of xanthan gum (XG) and calcium polysulfide and the rheological properties of XG solutions.
    Liu D; Ren L; Wen C; Dong J
    Environ Technol; 2018 Mar; 39(5):607-615. PubMed ID: 28316256
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rheological behavior of xanthan gum solution related to shear thinning fluid delivery for subsurface remediation.
    Zhong L; Oostrom M; Truex MJ; Vermeul VR; Szecsody JE
    J Hazard Mater; 2013 Jan; 244-245():160-70. PubMed ID: 23246952
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.