These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
213 related articles for article (PubMed ID: 25528364)
1. Preparation and physicochemical properties of chitosan broadleaf holly leaf nanoparticles. Zhang H; Huang Q; Huang Z; Liu T; Li Y Int J Pharm; 2015 Feb; 479(1):212-8. PubMed ID: 25528364 [TBL] [Abstract][Full Text] [Related]
2. Two-step method for encapsulation of oregano essential oil in chitosan nanoparticles: preparation, characterization and in vitro release study. Hosseini SF; Zandi M; Rezaei M; Farahmandghavi F Carbohydr Polym; 2013 Jun; 95(1):50-6. PubMed ID: 23618238 [TBL] [Abstract][Full Text] [Related]
3. Chitosan nanoparticle as protein delivery carrier--systematic examination of fabrication conditions for efficient loading and release. Gan Q; Wang T Colloids Surf B Biointerfaces; 2007 Sep; 59(1):24-34. PubMed ID: 17555948 [TBL] [Abstract][Full Text] [Related]
4. Encapsulation and release studies of strawberry polyphenols in biodegradable chitosan nanoformulation. Pulicharla R; Marques C; Das RK; Rouissi T; Brar SK Int J Biol Macromol; 2016 Jul; 88():171-8. PubMed ID: 27005769 [TBL] [Abstract][Full Text] [Related]
5. Electrospray fabrication of doxorubicin-chitosan-tripolyphosphate nanoparticles for delivery of doxorubicin. Songsurang K; Praphairaksit N; Siraleartmukul K; Muangsin N Arch Pharm Res; 2011 Apr; 34(4):583-92. PubMed ID: 21544723 [TBL] [Abstract][Full Text] [Related]
6. In vitro SPF and Photostability Assays of Emulsion Containing Nanoparticles with Vegetable Extracts Rich in Flavonoids. Cefali LC; Ataide JA; Eberlin S; da Silva Gonçalves FC; Fernandes AR; Marto J; Ribeiro HM; Foglio MA; Mazzola PG; Souto EB AAPS PharmSciTech; 2018 Dec; 20(1):9. PubMed ID: 30560393 [TBL] [Abstract][Full Text] [Related]
7. Stability, Intracellular Delivery, and Release of siRNA from Chitosan Nanoparticles Using Different Cross-Linkers. Raja MA; Katas H; Jing Wen T PLoS One; 2015; 10(6):e0128963. PubMed ID: 26068222 [TBL] [Abstract][Full Text] [Related]
8. Chitosan based micro- and nanoparticles for colon-targeted delivery of vancomycin prepared by alternative processing methods. Cerchiara T; Abruzzo A; di Cagno M; Bigucci F; Bauer-Brandl A; Parolin C; Vitali B; Gallucci MC; Luppi B Eur J Pharm Biopharm; 2015 May; 92():112-9. PubMed ID: 25769679 [TBL] [Abstract][Full Text] [Related]
9. Optimization of fabrication parameters to produce chitosan-tripolyphosphate nanoparticles for delivery of tea catechins. Hu B; Pan C; Sun Y; Hou Z; Ye H; Zeng X J Agric Food Chem; 2008 Aug; 56(16):7451-8. PubMed ID: 18627163 [TBL] [Abstract][Full Text] [Related]
10. Formation mechanism of monodisperse, low molecular weight chitosan nanoparticles by ionic gelation technique. Fan W; Yan W; Xu Z; Ni H Colloids Surf B Biointerfaces; 2012 Feb; 90():21-7. PubMed ID: 22014934 [TBL] [Abstract][Full Text] [Related]
11. Preparation of chitosan/tripolyphosphate nanoparticles with highly tunable size and low polydispersity. Sawtarie N; Cai Y; Lapitsky Y Colloids Surf B Biointerfaces; 2017 Sep; 157():110-117. PubMed ID: 28578269 [TBL] [Abstract][Full Text] [Related]
12. Evaluation and modification of N-trimethyl chitosan chloride nanoparticles as protein carriers. Chen F; Zhang ZR; Huang Y Int J Pharm; 2007 May; 336(1):166-73. PubMed ID: 17145144 [TBL] [Abstract][Full Text] [Related]
13. Stability of chitosan nanoparticles cross-linked with tripolyphosphate. Jonassen H; Kjøniksen AL; Hiorth M Biomacromolecules; 2012 Nov; 13(11):3747-56. PubMed ID: 23046433 [TBL] [Abstract][Full Text] [Related]
14. Preparation and in vitro evaluation of bFGF-loaded chitosan nanoparticles. Cetin M; Aktas Y; Vural I; Capan Y; Dogan LA; Duman M; Dalkara T Drug Deliv; 2007 Nov; 14(8):525-9. PubMed ID: 18027182 [TBL] [Abstract][Full Text] [Related]
15. Impact of physical parameters on particle size and reaction yield when using the ionic gelation method to obtain cationic polymeric chitosan-tripolyphosphate nanoparticles. Fàbregas A; Miñarro M; García-Montoya E; Pérez-Lozano P; Carrillo C; Sarrate R; Sánchez N; Ticó JR; Suñé-Negre JM Int J Pharm; 2013 Mar; 446(1-2):199-204. PubMed ID: 23434543 [TBL] [Abstract][Full Text] [Related]
16. On the kinetics of chitosan/tripolyphosphate micro- and nanogel aggregation and their effects on particle polydispersity. Huang Y; Lapitsky Y J Colloid Interface Sci; 2017 Jan; 486():27-37. PubMed ID: 27693518 [TBL] [Abstract][Full Text] [Related]
17. Chitosan nanoparticles: preparation, size evolution and stability. Rampino A; Borgogna M; Blasi P; Bellich B; Cesàro A Int J Pharm; 2013 Oct; 455(1-2):219-28. PubMed ID: 23886649 [TBL] [Abstract][Full Text] [Related]
18. Cetirizine dihydrochloride loaded microparticles design using ionotropic cross-linked chitosan nanoparticles by spray-drying method. Li FQ; Ji RR; Chen X; You BM; Pan YH; Su JC Arch Pharm Res; 2010 Dec; 33(12):1967-73. PubMed ID: 21191762 [TBL] [Abstract][Full Text] [Related]
19. Development and Characterization of Gefitinib Loaded Polymeric Nanoparticles by Ionic Gelation Method. Gupta M; Marwaha RK; Dureja H Pharm Nanotechnol; 2017; 5(4):301-309. PubMed ID: 28982345 [TBL] [Abstract][Full Text] [Related]
20. Preparation and optimization of chitosan nanoparticles from discarded squilla ( Balde A; Hasan A; Joshi I; Nazeer RA J Air Waste Manag Assoc; 2020 Dec; 70(12):1227-1235. PubMed ID: 32039656 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]