These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
231 related articles for article (PubMed ID: 25528366)
41. QARIP: a web server for quantitative proteomic analysis of regulated intramembrane proteolysis. Ivankov DN; Bogatyreva NS; Hönigschmid P; Dislich B; Hogl S; Kuhn PH; Frishman D; Lichtenthaler SF Nucleic Acids Res; 2013 Jul; 41(Web Server issue):W459-64. PubMed ID: 23729472 [TBL] [Abstract][Full Text] [Related]
42. Cytosolic extensions directly regulate a rhomboid protease by modulating substrate gating. Baker RP; Urban S Nature; 2015 Jul; 523(7558):101-5. PubMed ID: 25970241 [TBL] [Abstract][Full Text] [Related]
43. The membrane anchor of the transcriptional activator SREBP is characterized by intrinsic conformational flexibility. Linser R; Salvi N; Briones R; Rovó P; de Groot BL; Wagner G Proc Natl Acad Sci U S A; 2015 Oct; 112(40):12390-5. PubMed ID: 26392539 [TBL] [Abstract][Full Text] [Related]
44. RIP at the Synapse and the Role of Intracellular Domains in Neurons. Lee YJ; Ch'ng TH Neuromolecular Med; 2020 Mar; 22(1):1-24. PubMed ID: 31346933 [TBL] [Abstract][Full Text] [Related]
45. Recent advances in the study of Clp, FtsH and other proteases located in chloroplasts. Adam Z; Rudella A; van Wijk KJ Curr Opin Plant Biol; 2006 Jun; 9(3):234-40. PubMed ID: 16603408 [TBL] [Abstract][Full Text] [Related]
46. Rhomboid proteins in the chloroplast envelope affect the level of allene oxide synthase in Arabidopsis thaliana. Knopf RR; Feder A; Mayer K; Lin A; Rozenberg M; Schaller A; Adam Z Plant J; 2012 Nov; 72(4):559-71. PubMed ID: 22738221 [TBL] [Abstract][Full Text] [Related]
47. An internally quenched peptide as a new model substrate for rhomboid intramembrane proteases. Arutyunova E; Jiang Z; Yang J; Kulepa AN; Young HS; Verhelst S; O'Donoghue AJ; Lemieux MJ Biol Chem; 2018 Nov; 399(12):1389-1397. PubMed ID: 30044760 [TBL] [Abstract][Full Text] [Related]
48. Core principles of intramembrane proteolysis: comparison of rhomboid and site-2 family proteases. Urban S; Shi Y Curr Opin Struct Biol; 2008 Aug; 18(4):432-41. PubMed ID: 18440799 [TBL] [Abstract][Full Text] [Related]
49. N- and C-terminal degradomics: new approaches to reveal biological roles for plant proteases from substrate identification. Huesgen PF; Overall CM Physiol Plant; 2012 May; 145(1):5-17. PubMed ID: 22023699 [TBL] [Abstract][Full Text] [Related]
55. Substrate requirements for regulated intramembrane proteolysis of Bacillus subtilis pro-sigmaK. Prince H; Zhou R; Kroos L J Bacteriol; 2005 Feb; 187(3):961-71. PubMed ID: 15659674 [TBL] [Abstract][Full Text] [Related]
56. Taking a position on intramembrane proteolysis. Lemieux MJ J Biol Chem; 2018 Mar; 293(13):4664-4665. PubMed ID: 29602877 [TBL] [Abstract][Full Text] [Related]
57. Roles of the membrane-reentrant β-hairpin-like loop of RseP protease in selective substrate cleavage. Akiyama K; Mizuno S; Hizukuri Y; Mori H; Nogi T; Akiyama Y Elife; 2015 Oct; 4():. PubMed ID: 26447507 [TBL] [Abstract][Full Text] [Related]
58. New insights into the types and function of proteases in plastids. Kato Y; Sakamoto W Int Rev Cell Mol Biol; 2010; 280():185-218. PubMed ID: 20797683 [TBL] [Abstract][Full Text] [Related]
59. Function of site-2 proteases in bacteria and bacterial pathogens. Schneider JS; Glickman MS Biochim Biophys Acta; 2013 Dec; 1828(12):2808-14. PubMed ID: 24099002 [TBL] [Abstract][Full Text] [Related]
60. An Inducible Reconstitution System for the Real-Time Kinetic Analysis of Protease Activity and Inhibition Inside the Membrane. Baker RP; Urban S Methods Enzymol; 2017; 584():229-253. PubMed ID: 28065265 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]