BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 25528604)

  • 1. Comparison of direct and indirect pyrolysis of micro-algae Isochrysis.
    Wang X; Zhao B; Tang X; Yang X
    Bioresour Technol; 2015 Mar; 179():58-62. PubMed ID: 25528604
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Co-pyrolysis characteristics of microalgae Isochrysis and Chlorella: Kinetics, biocrude yield and interaction.
    Zhao B; Wang X; Yang X
    Bioresour Technol; 2015 Dec; 198():332-9. PubMed ID: 26407347
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cultivation, characterization, and properties of Chlorella vulgaris microalgae with different lipid contents and effect on fast pyrolysis oil composition.
    Adamakis ID; Lazaridis PA; Terzopoulou E; Torofias S; Valari M; Kalaitzi P; Rousonikolos V; Gkoutzikostas D; Zouboulis A; Zalidis G; Triantafyllidis KS
    Environ Sci Pollut Res Int; 2018 Aug; 25(23):23018-23032. PubMed ID: 29859001
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel process for enhancing oil production in algae biorefineries through bioconversion of solid by-products.
    Trzcinski AP; Hernandez E; Webb C
    Bioresour Technol; 2012 Jul; 116():295-301. PubMed ID: 22522020
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrothermal pretreatment of microalgae for production of pyrolytic bio-oil with a low nitrogen content.
    Du Z; Mohr M; Ma X; Cheng Y; Lin X; Liu Y; Zhou W; Chen P; Ruan R
    Bioresour Technol; 2012 Sep; 120():13-8. PubMed ID: 22776260
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A comparative study of bio-oils from pyrolysis of microalgae and oil seed waste in a fluidized bed.
    Kim SW; Koo BS; Lee DH
    Bioresour Technol; 2014 Jun; 162():96-102. PubMed ID: 24747387
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microwave-assisted pyrolysis of microalgae for biofuel production.
    Du Z; Li Y; Wang X; Wan Y; Chen Q; Wang C; Lin X; Liu Y; Chen P; Ruan R
    Bioresour Technol; 2011 Apr; 102(7):4890-6. PubMed ID: 21316940
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The characteristic and evaluation method of fast pyrolysis of microalgae to produce syngas.
    Hu Z; Ma X; Li L
    Bioresour Technol; 2013 Jul; 140():220-6. PubMed ID: 23693148
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of various microalgae liquid biofuel production pathways based on energetic, economic and environmental criteria.
    Delrue F; Li-Beisson Y; Setier PA; Sahut C; Roubaud A; Froment AK; Peltier G
    Bioresour Technol; 2013 May; 136():205-12. PubMed ID: 23567683
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of carbohydrates as the major carbon sink of the marine microalga Isochrysis zhangjiangensis (Haptophyta) and optimization of its productivity by nitrogen manipulation.
    Wang HT; Yao CH; Ai JN; Cao XP; Xue S; Wang WL
    Bioresour Technol; 2014 Nov; 171():298-304. PubMed ID: 25216035
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nannochloropsis algae pyrolysis with ceria-based catalysts for production of high-quality bio-oils.
    Aysu T; Sanna A
    Bioresour Technol; 2015 Oct; 194():108-16. PubMed ID: 26188553
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microwave pyrolysis of microalgae for high syngas production.
    Beneroso D; Bermúdez JM; Arenillas A; Menéndez JA
    Bioresour Technol; 2013 Sep; 144():240-6. PubMed ID: 23871926
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Catalytic hydrothermal processing of microalgae: decomposition and upgrading of lipids.
    Biller P; Riley R; Ross AB
    Bioresour Technol; 2011 Apr; 102(7):4841-8. PubMed ID: 21295976
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biogas yields and composition from oil-extracted halophilic algae residues in conventional biogas plants operated at high salinities.
    Adamietz T; Jurkowski W; Adolph J; Brück TB
    Bioprocess Biosyst Eng; 2019 Dec; 42(12):1915-1922. PubMed ID: 31392571
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Catalytic hydropyrolysis of microalgae: influence of operating variables on the formation and composition of bio-oil.
    Chang Z; Duan P; Xu Y
    Bioresour Technol; 2015 May; 184():349-354. PubMed ID: 25160747
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Catalytic pyrolysis of microalgae and their three major components: carbohydrates, proteins, and lipids.
    Du Z; Hu B; Ma X; Cheng Y; Liu Y; Lin X; Wan Y; Lei H; Chen P; Ruan R
    Bioresour Technol; 2013 Feb; 130():777-82. PubMed ID: 23376153
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conversion efficiency and oil quality of low-lipid high-protein and high-lipid low-protein microalgae via hydrothermal liquefaction.
    Li H; Liu Z; Zhang Y; Li B; Lu H; Duan N; Liu M; Zhu Z; Si B
    Bioresour Technol; 2014 Feb; 154():322-9. PubMed ID: 24413449
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anaerobic coculture of microalgae with Thermosipho globiformans and Methanocaldococcus jannaschii at 68°C enhances generation of n-alkane-rich biofuels after pyrolysis.
    Yamane K; Matsuyama S; Igarashi K; Utsumi M; Shiraiwa Y; Kuwabara T
    Appl Environ Microbiol; 2013 Feb; 79(3):924-30. PubMed ID: 23183975
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Co-pyrolysis of lignocellulosic biomass and microalgae: Products characteristics and interaction effect.
    Chen W; Chen Y; Yang H; Xia M; Li K; Chen X; Chen H
    Bioresour Technol; 2017 Dec; 245(Pt A):860-868. PubMed ID: 28926919
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Catalytic pyrolysis and liquefaction behavior of microalgae for bio-oil production.
    Xu Y; Hu Y; Peng Y; Yao L; Dong Y; Yang B; Song R
    Bioresour Technol; 2020 Mar; 300():122665. PubMed ID: 31918303
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.