These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
195 related articles for article (PubMed ID: 25528604)
1. Comparison of direct and indirect pyrolysis of micro-algae Isochrysis. Wang X; Zhao B; Tang X; Yang X Bioresour Technol; 2015 Mar; 179():58-62. PubMed ID: 25528604 [TBL] [Abstract][Full Text] [Related]
2. Co-pyrolysis characteristics of microalgae Isochrysis and Chlorella: Kinetics, biocrude yield and interaction. Zhao B; Wang X; Yang X Bioresour Technol; 2015 Dec; 198():332-9. PubMed ID: 26407347 [TBL] [Abstract][Full Text] [Related]
3. Cultivation, characterization, and properties of Chlorella vulgaris microalgae with different lipid contents and effect on fast pyrolysis oil composition. Adamakis ID; Lazaridis PA; Terzopoulou E; Torofias S; Valari M; Kalaitzi P; Rousonikolos V; Gkoutzikostas D; Zouboulis A; Zalidis G; Triantafyllidis KS Environ Sci Pollut Res Int; 2018 Aug; 25(23):23018-23032. PubMed ID: 29859001 [TBL] [Abstract][Full Text] [Related]
4. A novel process for enhancing oil production in algae biorefineries through bioconversion of solid by-products. Trzcinski AP; Hernandez E; Webb C Bioresour Technol; 2012 Jul; 116():295-301. PubMed ID: 22522020 [TBL] [Abstract][Full Text] [Related]
5. Hydrothermal pretreatment of microalgae for production of pyrolytic bio-oil with a low nitrogen content. Du Z; Mohr M; Ma X; Cheng Y; Lin X; Liu Y; Zhou W; Chen P; Ruan R Bioresour Technol; 2012 Sep; 120():13-8. PubMed ID: 22776260 [TBL] [Abstract][Full Text] [Related]
6. A comparative study of bio-oils from pyrolysis of microalgae and oil seed waste in a fluidized bed. Kim SW; Koo BS; Lee DH Bioresour Technol; 2014 Jun; 162():96-102. PubMed ID: 24747387 [TBL] [Abstract][Full Text] [Related]
7. Microwave-assisted pyrolysis of microalgae for biofuel production. Du Z; Li Y; Wang X; Wan Y; Chen Q; Wang C; Lin X; Liu Y; Chen P; Ruan R Bioresour Technol; 2011 Apr; 102(7):4890-6. PubMed ID: 21316940 [TBL] [Abstract][Full Text] [Related]
8. The characteristic and evaluation method of fast pyrolysis of microalgae to produce syngas. Hu Z; Ma X; Li L Bioresour Technol; 2013 Jul; 140():220-6. PubMed ID: 23693148 [TBL] [Abstract][Full Text] [Related]
9. Comparison of various microalgae liquid biofuel production pathways based on energetic, economic and environmental criteria. Delrue F; Li-Beisson Y; Setier PA; Sahut C; Roubaud A; Froment AK; Peltier G Bioresour Technol; 2013 May; 136():205-12. PubMed ID: 23567683 [TBL] [Abstract][Full Text] [Related]
10. Identification of carbohydrates as the major carbon sink of the marine microalga Isochrysis zhangjiangensis (Haptophyta) and optimization of its productivity by nitrogen manipulation. Wang HT; Yao CH; Ai JN; Cao XP; Xue S; Wang WL Bioresour Technol; 2014 Nov; 171():298-304. PubMed ID: 25216035 [TBL] [Abstract][Full Text] [Related]
11. Nannochloropsis algae pyrolysis with ceria-based catalysts for production of high-quality bio-oils. Aysu T; Sanna A Bioresour Technol; 2015 Oct; 194():108-16. PubMed ID: 26188553 [TBL] [Abstract][Full Text] [Related]
12. Microwave pyrolysis of microalgae for high syngas production. Beneroso D; Bermúdez JM; Arenillas A; Menéndez JA Bioresour Technol; 2013 Sep; 144():240-6. PubMed ID: 23871926 [TBL] [Abstract][Full Text] [Related]
13. Catalytic hydrothermal processing of microalgae: decomposition and upgrading of lipids. Biller P; Riley R; Ross AB Bioresour Technol; 2011 Apr; 102(7):4841-8. PubMed ID: 21295976 [TBL] [Abstract][Full Text] [Related]
14. Biogas yields and composition from oil-extracted halophilic algae residues in conventional biogas plants operated at high salinities. Adamietz T; Jurkowski W; Adolph J; Brück TB Bioprocess Biosyst Eng; 2019 Dec; 42(12):1915-1922. PubMed ID: 31392571 [TBL] [Abstract][Full Text] [Related]
15. Catalytic hydropyrolysis of microalgae: influence of operating variables on the formation and composition of bio-oil. Chang Z; Duan P; Xu Y Bioresour Technol; 2015 May; 184():349-354. PubMed ID: 25160747 [TBL] [Abstract][Full Text] [Related]
16. Catalytic pyrolysis of microalgae and their three major components: carbohydrates, proteins, and lipids. Du Z; Hu B; Ma X; Cheng Y; Liu Y; Lin X; Wan Y; Lei H; Chen P; Ruan R Bioresour Technol; 2013 Feb; 130():777-82. PubMed ID: 23376153 [TBL] [Abstract][Full Text] [Related]
17. Conversion efficiency and oil quality of low-lipid high-protein and high-lipid low-protein microalgae via hydrothermal liquefaction. Li H; Liu Z; Zhang Y; Li B; Lu H; Duan N; Liu M; Zhu Z; Si B Bioresour Technol; 2014 Feb; 154():322-9. PubMed ID: 24413449 [TBL] [Abstract][Full Text] [Related]
18. Anaerobic coculture of microalgae with Thermosipho globiformans and Methanocaldococcus jannaschii at 68°C enhances generation of n-alkane-rich biofuels after pyrolysis. Yamane K; Matsuyama S; Igarashi K; Utsumi M; Shiraiwa Y; Kuwabara T Appl Environ Microbiol; 2013 Feb; 79(3):924-30. PubMed ID: 23183975 [TBL] [Abstract][Full Text] [Related]
19. Co-pyrolysis of lignocellulosic biomass and microalgae: Products characteristics and interaction effect. Chen W; Chen Y; Yang H; Xia M; Li K; Chen X; Chen H Bioresour Technol; 2017 Dec; 245(Pt A):860-868. PubMed ID: 28926919 [TBL] [Abstract][Full Text] [Related]
20. Catalytic pyrolysis and liquefaction behavior of microalgae for bio-oil production. Xu Y; Hu Y; Peng Y; Yao L; Dong Y; Yang B; Song R Bioresour Technol; 2020 Mar; 300():122665. PubMed ID: 31918303 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]