BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

799 related articles for article (PubMed ID: 25528632)

  • 1. Recognizing upper limb movements with wrist worn inertial sensors using k-means clustering classification.
    Biswas D; Cranny A; Gupta N; Maharatna K; Achner J; Klemke J; Jöbges M; Ortmann S
    Hum Mov Sci; 2015 Apr; 40():59-76. PubMed ID: 25528632
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recognition of elementary arm movements using orientation of a tri-axial accelerometer located near the wrist.
    Biswas D; Corda D; Baldus G; Cranny A; Maharatna K; Achner J; Klemke J; Jöbges M; Ortmann S
    Physiol Meas; 2014 Sep; 35(9):1751-68. PubMed ID: 25119720
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rehab-Net: Deep Learning Framework for Arm Movement Classification Using Wearable Sensors for Stroke Rehabilitation.
    Panwar M; Biswas D; Bajaj H; Jobges M; Turk R; Maharatna K; Acharyya A
    IEEE Trans Biomed Eng; 2019 Nov; 66(11):3026-3037. PubMed ID: 30794162
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of Three State-of-the-Art Classifiers for Recognition of Activities of Daily Living from Smart Home Ambient Data.
    Nef T; Urwyler P; Büchler M; Tarnanas I; Stucki R; Cazzoli D; Müri R; Mosimann U
    Sensors (Basel); 2015 May; 15(5):11725-40. PubMed ID: 26007727
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Would a thermal sensor improve arm motion classification accuracy of a single wrist-mounted inertial device?
    Lui J; Menon C
    Biomed Eng Online; 2019 May; 18(1):53. PubMed ID: 31064354
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of EEG measurement of upper limb movement in motor imagery training system.
    Suwannarat A; Pan-Ngum S; Israsena P
    Biomed Eng Online; 2018 Aug; 17(1):103. PubMed ID: 30071853
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recognizing complex upper extremity activities using body worn sensors.
    Lemmens RJ; Janssen-Potten YJ; Timmermans AA; Smeets RJ; Seelen HA
    PLoS One; 2015; 10(3):e0118642. PubMed ID: 25734641
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Use of multiple wearable inertial sensors in upper limb motion tracking.
    Zhou H; Stone T; Hu H; Harris N
    Med Eng Phys; 2008 Jan; 30(1):123-33. PubMed ID: 17251049
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of accelerometer based multi-sensor versus single-sensor activity recognition systems.
    Gao L; Bourke AK; Nelson J
    Med Eng Phys; 2014 Jun; 36(6):779-85. PubMed ID: 24636448
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparing supervised learning techniques on the task of physical activity recognition.
    Dalton A; OLaighin G
    IEEE J Biomed Health Inform; 2013 Jan; 17(1):46-52. PubMed ID: 23070357
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detecting compensatory movements of stroke survivors using pressure distribution data and machine learning algorithms.
    Cai S; Li G; Zhang X; Huang S; Zheng H; Ma K; Xie L
    J Neuroeng Rehabil; 2019 Nov; 16(1):131. PubMed ID: 31684970
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Measuring Functional Arm Movement after Stroke Using a Single Wrist-Worn Sensor and Machine Learning.
    Bochniewicz EM; Emmer G; McLeod A; Barth J; Dromerick AW; Lum P
    J Stroke Cerebrovasc Dis; 2017 Dec; 26(12):2880-2887. PubMed ID: 28781056
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cross-validation and out-of-sample testing of physical activity intensity predictions with a wrist-worn accelerometer.
    Montoye AHK; Westgate BS; Fonley MR; Pfeiffer KA
    J Appl Physiol (1985); 2018 May; 124(5):1284-1293. PubMed ID: 29369742
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Physical Human Activity Recognition Using Wearable Sensors.
    Attal F; Mohammed S; Dedabrishvili M; Chamroukhi F; Oukhellou L; Amirat Y
    Sensors (Basel); 2015 Dec; 15(12):31314-38. PubMed ID: 26690450
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of a threshold-based tri-axial accelerometer fall detection algorithm.
    Bourke AK; O'Brien JV; Lyons GM
    Gait Posture; 2007 Jul; 26(2):194-9. PubMed ID: 17101272
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CNN based approach for activity recognition using a wrist-worn accelerometer.
    Panwar M; Dyuthi SR; Chandra Prakash K; Biswas D; Acharyya A; Maharatna K; Gautam A; Naik GR
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():2438-2441. PubMed ID: 29060391
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detecting Elementary Arm Movements by Tracking Upper Limb Joint Angles With MARG Sensors.
    Mazomenos EB; Biswas D; Cranny A; Rajan A; Maharatna K; Achner J; Klemke J; Jobges M; Ortmann S; Langendorfer P
    IEEE J Biomed Health Inform; 2016 Jul; 20(4):1088-99. PubMed ID: 25966489
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Physical activity classification using the GENEA wrist-worn accelerometer.
    Zhang S; Rowlands AV; Murray P; Hurst TL
    Med Sci Sports Exerc; 2012 Apr; 44(4):742-8. PubMed ID: 21988935
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Activity classification based on inertial and barometric pressure sensors at different anatomical locations.
    Moncada-Torres A; Leuenberger K; Gonzenbach R; Luft A; Gassert R
    Physiol Meas; 2014 Jul; 35(7):1245-63. PubMed ID: 24853451
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recognition of activities of daily living in healthy subjects using two ad-hoc classifiers.
    Urwyler P; Rampa L; Stucki R; Büchler M; Müri R; Mosimann UP; Nef T
    Biomed Eng Online; 2015 Jun; 14():54. PubMed ID: 26048452
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 40.