BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

801 related articles for article (PubMed ID: 25528632)

  • 21. Activity classification using a single chest mounted tri-axial accelerometer.
    Godfrey A; Bourke AK; Olaighin GM; van de Ven P; Nelson J
    Med Eng Phys; 2011 Nov; 33(9):1127-35. PubMed ID: 21636308
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A threshold-based fall-detection algorithm using a bi-axial gyroscope sensor.
    Bourke AK; Lyons GM
    Med Eng Phys; 2008 Jan; 30(1):84-90. PubMed ID: 17222579
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A method to qualitatively assess arm use in stroke survivors in the home environment.
    Leuenberger K; Gonzenbach R; Wachter S; Luft A; Gassert R
    Med Biol Eng Comput; 2017 Jan; 55(1):141-150. PubMed ID: 27106757
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Classification of Daily Activities for the Elderly Using Wearable Sensors.
    Liu J; Sohn J; Kim S
    J Healthc Eng; 2017; 2017():8934816. PubMed ID: 29317996
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Identification of a feature selection based pattern recognition scheme for finger movement recognition from multichannel EMG signals.
    Purushothaman G; Vikas R
    Australas Phys Eng Sci Med; 2018 Jun; 41(2):549-559. PubMed ID: 29744809
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Adherence monitoring of rehabilitation exercise with inertial sensors: A clinical validation study.
    Bavan L; Surmacz K; Beard D; Mellon S; Rees J
    Gait Posture; 2019 May; 70():211-217. PubMed ID: 30903993
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Detecting falls with wearable sensors using machine learning techniques.
    Özdemir AT; Barshan B
    Sensors (Basel); 2014 Jun; 14(6):10691-708. PubMed ID: 24945676
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Threshold-based fall detection using a hybrid of tri-axial accelerometer and gyroscope.
    Wang FT; Chan HL; Hsu MH; Lin CK; Chao PK; Chang YJ
    Physiol Meas; 2018 Oct; 39(10):105002. PubMed ID: 30207983
    [TBL] [Abstract][Full Text] [Related]  

  • 29. An Activity Recognition Framework Deploying the Random Forest Classifier and A Single Optical Heart Rate Monitoring and Triaxial AccelerometerWrist-Band.
    Mehrang S; Pietilä J; Korhonen I
    Sensors (Basel); 2018 Feb; 18(2):. PubMed ID: 29470385
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Automatic Recognition of Activities of Daily Living Utilizing Insole-Based and Wrist-Worn Wearable Sensors.
    Hegde N; Bries M; Swibas T; Melanson E; Sazonov E; Hegde N; Bries M; Swibas T; Melanson E; Sazonov E
    IEEE J Biomed Health Inform; 2018 Jul; 22(4):979-988. PubMed ID: 28783651
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Daily wrist activity classification using a smart band.
    Nguyen ND; Truong PH; Jeong GM
    Physiol Meas; 2017 Aug; 38(9):L10-L16. PubMed ID: 28654423
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Supervised Myoelectrical Hand Gesture Recognition in Post-Acute Stroke Patients with Upper Limb Paresis on Affected and Non-Affected Sides.
    Anastasiev A; Kadone H; Marushima A; Watanabe H; Zaboronok A; Watanabe S; Matsumura A; Suzuki K; Matsumaru Y; Ishikawa E
    Sensors (Basel); 2022 Nov; 22(22):. PubMed ID: 36433330
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Identifying types of physical activity with a single accelerometer: evaluating laboratory-trained algorithms in daily life.
    Gyllensten IC; Bonomi AG
    IEEE Trans Biomed Eng; 2011 Sep; 58(9):2656-63. PubMed ID: 21712150
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Feature selection and activity recognition system using a single triaxial accelerometer.
    Gupta P; Dallas T
    IEEE Trans Biomed Eng; 2014 Jun; 61(6):1780-6. PubMed ID: 24691526
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Variability Analysis of Therapeutic Movements using Wearable Inertial Sensors.
    López-Nava IH; Arnrich B; Muñoz-Meléndez A; Güneysu A
    J Med Syst; 2017 Jan; 41(1):7. PubMed ID: 27848176
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Real-Time Classification of Patients with Balance Disorders vs. Normal Subjects Using a Low-Cost Small Wireless Wearable Gait Sensor.
    Nukala BT; Nakano T; Rodriguez A; Tsay J; Lopez J; Nguyen TQ; Zupancic S; Lie DY
    Biosensors (Basel); 2016 Nov; 6(4):. PubMed ID: 27916817
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Performance of Activity Classification Algorithms in Free-Living Older Adults.
    Sasaki JE; Hickey AM; Staudenmayer JW; John D; Kent JA; Freedson PS
    Med Sci Sports Exerc; 2016 May; 48(5):941-50. PubMed ID: 26673129
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Assessment of daily-life reaching performance after stroke.
    van Meulen FB; Reenalda J; Buurke JH; Veltink PH
    Ann Biomed Eng; 2015 Feb; 43(2):478-86. PubMed ID: 25449150
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Classification of team sport activities using a single wearable tracking device.
    Wundersitz DWT; Josman C; Gupta R; Netto KJ; Gastin PB; Robertson S
    J Biomech; 2015 Nov; 48(15):3975-3981. PubMed ID: 26472301
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Support vector machine for classification of walking conditions of persons after stroke with dropped foot.
    Lau HY; Tong KY; Zhu H
    Hum Mov Sci; 2009 Aug; 28(4):504-14. PubMed ID: 19428134
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 41.