These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
114 related articles for article (PubMed ID: 25528677)
1. Hydrogen generation: aromatic dithiolate-bridged metal carbonyl complexes as hydrogenase catalytic site models. Pandey IK; Natarajan M; Kaur-Ghumaan S J Inorg Biochem; 2015 Feb; 143():88-110. PubMed ID: 25528677 [TBL] [Abstract][Full Text] [Related]
2. Diiron dithiolate complexes containing intra-ligand NH ... S hydrogen bonds: [FeFe] hydrogenase active site models for the electrochemical proton reduction of HOAc with low overpotential. Yu Z; Wang M; Li P; Dong W; Wang F; Sun L Dalton Trans; 2008 May; (18):2400-6. PubMed ID: 18461194 [TBL] [Abstract][Full Text] [Related]
3. Reactions of [FeFe]-hydrogenase models involving the formation of hydrides related to proton reduction and hydrogen oxidation. Wang N; Wang M; Chen L; Sun L Dalton Trans; 2013 Sep; 42(34):12059-71. PubMed ID: 23846321 [TBL] [Abstract][Full Text] [Related]
4. Effect of the S-to-S bridge on the redox properties and H Cheng M; Wang M; Zheng D; Sun L Dalton Trans; 2016 Nov; 45(44):17687-17696. PubMed ID: 27754505 [TBL] [Abstract][Full Text] [Related]
5. Catalytic hydrogen evolution from mononuclear iron(II) carbonyl complexes as minimal functional models of the [FeFe] hydrogenase active site. Kaur-Ghumaan S; Schwartz L; Lomoth R; Stein M; Ott S Angew Chem Int Ed Engl; 2010 Oct; 49(43):8033-6. PubMed ID: 20845342 [No Abstract] [Full Text] [Related]
6. Dithiolate-bridged Fe-Ni-Fe trinuclear complexes consisting of Fe(CO)(3-n)(CN)(n) (n = 0, 1) components relevant to the active site of [NiFe] hydrogenase. Pal S; Ohki Y; Yoshikawa T; Kuge K; Tatsumi K Chem Asian J; 2009 Jun; 4(6):961-968. PubMed ID: 19130447 [TBL] [Abstract][Full Text] [Related]
7. An iron(II) carbonyl thiolato complex bearing 2-methoxy-pyridine: a structural model of the active site of [Fe] hydrogenase. Tanino S; Ohki Y; Tatsumi K Chem Asian J; 2010 Sep; 5(9):1962-4. PubMed ID: 20665653 [No Abstract] [Full Text] [Related]
8. An oxidized active site model for the FeFe hydrogenase: reduction with hydrogen gas. Matthews SL; Heinekey DM Inorg Chem; 2011 Sep; 50(17):7925-7. PubMed ID: 21793493 [TBL] [Abstract][Full Text] [Related]
9. Effect of Lewis acid on the structure of a diiron dithiolate complex based on the active site of [FeFe]-hydrogenase assessed by density functional theory. Lee JW; Jo WH Dalton Trans; 2009 Oct; (40):8532-7. PubMed ID: 19809728 [TBL] [Abstract][Full Text] [Related]
10. Dithiolato-bridged dinuclear iron-nickel complexes [Fe(CO)2(CN)2(mu-SCH2CH2CH2S)Ni(S2CNR2)]- modeling the active site of [NiFe] hydrogenase. Li Z; Ohki Y; Tatsumi K J Am Chem Soc; 2005 Jun; 127(25):8950-1. PubMed ID: 15969562 [TBL] [Abstract][Full Text] [Related]
11. A dithiolate-bridged (CN)2(CO)Fe-Ni complex reproducing the IR bands of [NiFe] hydrogenase. Tanino S; Li Z; Ohki Y; Tatsumi K Inorg Chem; 2009 Mar; 48(6):2358-60. PubMed ID: 19222192 [TBL] [Abstract][Full Text] [Related]
12. Site-selective X-ray spectroscopy on an asymmetric model complex of the [FeFe] hydrogenase active site. Leidel N; Chernev P; Havelius KG; Ezzaher S; Ott S; Haumann M Inorg Chem; 2012 Apr; 51(8):4546-59. PubMed ID: 22443530 [TBL] [Abstract][Full Text] [Related]
13. First insights into the protonation of dissymetrically disubstituted di-iron azadithiolate models of the [FeFe]H2ases active site. Ezzaher S; Orain PY; Capon JF; Gloaguen F; Pétillon FY; Roisnel T; Schollhammer P; Talarmin J Chem Commun (Camb); 2008 Jun; (22):2547-9. PubMed ID: 18506239 [TBL] [Abstract][Full Text] [Related]
14. DFT characterization of the reaction pathways for terminal- to μ-hydride isomerisation in synthetic models of the [FeFe]-hydrogenase active site. Zampella G; Fantucci P; De Gioia L Chem Commun (Camb); 2010 Dec; 46(46):8824-6. PubMed ID: 20953495 [TBL] [Abstract][Full Text] [Related]
15. Dihydrogen activation by sulfido-bridged dinuclear Ru/Ge complexes: insight into the [NiFe] hydrogenase unready state. Matsumoto T; Itakura N; Nakaya Y; Tatsumi K Chem Commun (Camb); 2011 Jan; 47(3):1030-2. PubMed ID: 21072402 [TBL] [Abstract][Full Text] [Related]
16. Synthesis and reactivity of mononuclear iron models of [Fe]-hydrogenase that contain an acylmethylpyridinol ligand. Hu B; Chen D; Hu X Chemistry; 2014 Feb; 20(6):1677-82. PubMed ID: 24402840 [TBL] [Abstract][Full Text] [Related]
17. Synthesis and reactivity of iron acyl complexes modeling the active site of [Fe]-hydrogenase. Chen D; Scopelliti R; Hu X J Am Chem Soc; 2010 Jan; 132(3):928-9. PubMed ID: 20041643 [TBL] [Abstract][Full Text] [Related]
18. Photocatalytic hydrogen production using models of the iron-iron hydrogenase active site dispersed in micellar solution. Orain C; Quentel F; Gloaguen F ChemSusChem; 2014 Feb; 7(2):638-43. PubMed ID: 24127363 [TBL] [Abstract][Full Text] [Related]
19. [FeFe]-Hydrogenase active site models with relatively low reduction potentials: Diiron dithiolate complexes containing rigid bridges. Li P; Wang M; Pan J; Chen L; Wang N; Sun L J Inorg Biochem; 2008 Apr; 102(4):952-9. PubMed ID: 18262276 [TBL] [Abstract][Full Text] [Related]
20. Quest for metal/NH bifunctional bioinspired catalysis in a dinuclear platform. Kuwata S; Ikariya T Dalton Trans; 2010 Mar; 39(12):2984-92. PubMed ID: 20221529 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]