BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 25528697)

  • 1. Pre-operative prediction of surgical morbidity in children: comparison of five statistical models.
    Cooper JN; Wei L; Fernandez SA; Minneci PC; Deans KJ
    Comput Biol Med; 2015 Feb; 57():54-65. PubMed ID: 25528697
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Seminal quality prediction using data mining methods.
    Sahoo AJ; Kumar Y
    Technol Health Care; 2014; 22(4):531-45. PubMed ID: 24898862
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of Machine Learning Techniques for Heart Failure Readmissions.
    Mortazavi BJ; Downing NS; Bucholz EM; Dharmarajan K; Manhapra A; Li SX; Negahban SN; Krumholz HM
    Circ Cardiovasc Qual Outcomes; 2016 Nov; 9(6):629-640. PubMed ID: 28263938
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Patient classification and outcome prediction in IgA nephropathy.
    Diciolla M; Binetti G; Di Noia T; Pesce F; Schena FP; Vågane AM; Bjørneklett R; Suzuki H; Tomino Y; Naso D
    Comput Biol Med; 2015 Nov; 66():278-86. PubMed ID: 26453758
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Contemporary QSAR classifiers compared.
    Bruce CL; Melville JL; Pickett SD; Hirst JD
    J Chem Inf Model; 2007; 47(1):219-27. PubMed ID: 17238267
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting the graft survival for heart-lung transplantation patients: an integrated data mining methodology.
    Oztekin A; Delen D; Kong ZJ
    Int J Med Inform; 2009 Dec; 78(12):e84-96. PubMed ID: 19497782
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Looking beyond historical patient outcomes to improve clinical models.
    Chia CC; Rubinfeld I; Scirica BM; McMillan S; Gurm HS; Syed Z
    Sci Transl Med; 2012 Apr; 4(131):131ra49. PubMed ID: 22539773
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multicenter Comparison of Machine Learning Methods and Conventional Regression for Predicting Clinical Deterioration on the Wards.
    Churpek MM; Yuen TC; Winslow C; Meltzer DO; Kattan MW; Edelson DP
    Crit Care Med; 2016 Feb; 44(2):368-74. PubMed ID: 26771782
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Using classification tree and logistic regression methods to diagnose myocardial infarction.
    Tsien CL; Fraser HS; Long WJ; Kennedy RL
    Stud Health Technol Inform; 1998; 52 Pt 1():493-7. PubMed ID: 10384505
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel method for predicting kidney stone type using ensemble learning.
    Kazemi Y; Mirroshandel SA
    Artif Intell Med; 2018 Jan; 84():117-126. PubMed ID: 29241659
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gradient boosted trees with individual explanations: An alternative to logistic regression for viability prediction in the first trimester of pregnancy.
    Vaulet T; Al-Memar M; Fourie H; Bobdiwala S; Saso S; Pipi M; Stalder C; Bennett P; Timmerman D; Bourne T; De Moor B
    Comput Methods Programs Biomed; 2022 Jan; 213():106520. PubMed ID: 34808532
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prediction of different types of liver diseases using rule based classification model.
    Kumar Y; Sahoo G
    Technol Health Care; 2013; 21(5):417-32. PubMed ID: 23963359
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Machine learning applications to clinical decision support in neurosurgery: an artificial intelligence augmented systematic review.
    Buchlak QD; Esmaili N; Leveque JC; Farrokhi F; Bennett C; Piccardi M; Sethi RK
    Neurosurg Rev; 2020 Oct; 43(5):1235-1253. PubMed ID: 31422572
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Data mining methods in the prediction of Dementia: A real-data comparison of the accuracy, sensitivity and specificity of linear discriminant analysis, logistic regression, neural networks, support vector machines, classification trees and random forests.
    Maroco J; Silva D; Rodrigues A; Guerreiro M; Santana I; de Mendonça A
    BMC Res Notes; 2011 Aug; 4():299. PubMed ID: 21849043
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mixture classification model based on clinical markers for breast cancer prognosis.
    Zeng T; Liu J
    Artif Intell Med; 2010; 48(2-3):129-37. PubMed ID: 20005686
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Using methods from the data-mining and machine-learning literature for disease classification and prediction: a case study examining classification of heart failure subtypes.
    Austin PC; Tu JV; Ho JE; Levy D; Lee DS
    J Clin Epidemiol; 2013 Apr; 66(4):398-407. PubMed ID: 23384592
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicting factors for survival of breast cancer patients using machine learning techniques.
    Ganggayah MD; Taib NA; Har YC; Lio P; Dhillon SK
    BMC Med Inform Decis Mak; 2019 Mar; 19(1):48. PubMed ID: 30902088
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting Prolonged Length of Hospital Stay for Peritoneal Dialysis-Treated Patients Using Stacked Generalization: Model Development and Validation Study.
    Kong G; Wu J; Chu H; Yang C; Lin Y; Lin K; Shi Y; Wang H; Zhang L
    JMIR Med Inform; 2021 May; 9(5):e17886. PubMed ID: 34009135
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A hybrid data mining model for diagnosis of patients with clinical suspicion of dementia.
    Moreira LB; Namen AA
    Comput Methods Programs Biomed; 2018 Oct; 165():139-149. PubMed ID: 30337069
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 13.