BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 25528721)

  • 1. Determine the equilibrium mechanical properties of articular cartilage from the short-term indentation response.
    Chen X; Zimmerman BK; Lu XL
    J Biomech; 2015 Jan; 48(1):176-80. PubMed ID: 25528721
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determining Tension-Compression Nonlinear Mechanical Properties of Articular Cartilage from Indentation Testing.
    Chen X; Zhou Y; Wang L; Santare MH; Wan LQ; Lu XL
    Ann Biomed Eng; 2016 Apr; 44(4):1148-58. PubMed ID: 26240062
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Compressive properties of mouse articular cartilage determined in a novel micro-indentation test method and biphasic finite element model.
    Cao L; Youn I; Guilak F; Setton LA
    J Biomech Eng; 2006 Oct; 128(5):766-71. PubMed ID: 16995764
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A viscoelastic constitutive model can accurately represent entire creep indentation tests of human patella cartilage.
    Keenan KE; Pal S; Lindsey DP; Besier TF; Beaupre GS
    J Appl Biomech; 2013 Jun; 29(3):292-302. PubMed ID: 23027200
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biomechanical, biochemical and structural correlations in immature and mature rabbit articular cartilage.
    Julkunen P; Harjula T; Iivarinen J; Marjanen J; Seppänen K; Närhi T; Arokoski J; Lammi MJ; Brama PA; Jurvelin JS; Helminen HJ
    Osteoarthritis Cartilage; 2009 Dec; 17(12):1628-38. PubMed ID: 19615962
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proteoglycans and mechanical behavior of condylar cartilage.
    Lu XL; Mow VC; Guo XE
    J Dent Res; 2009 Mar; 88(3):244-8. PubMed ID: 19329458
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Indentation stiffness of young canine knee articular cartilage--influence of strenuous joint loading.
    Jurvelin J; Kiviranta I; Säämänen AM; Tammi M; Helminen HJ
    J Biomech; 1990; 23(12):1239-46. PubMed ID: 2292603
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biphasic indentation of articular cartilage--II. A numerical algorithm and an experimental study.
    Mow VC; Gibbs MC; Lai WM; Zhu WB; Athanasiou KA
    J Biomech; 1989; 22(8-9):853-61. PubMed ID: 2613721
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biomechanical tissue characterization of the superior joint space of the porcine temporomandibular joint.
    Kim KW; Wong ME; Helfrick JF; Thomas JB; Athanasiou KA
    Ann Biomed Eng; 2003 Sep; 31(8):924-30. PubMed ID: 12918907
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biomechanical properties of hip cartilage in experimental animal models.
    Athanasiou KA; Agarwal A; Muffoletto A; Dzida FJ; Constantinides G; Clem M
    Clin Orthop Relat Res; 1995 Jul; (316):254-66. PubMed ID: 7634715
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stress relaxation behaviors of articular cartilages in porcine temporomandibular joint.
    Tanaka E; Pelayo F; Kim N; Lamela MJ; Kawai N; Fernández-Canteli A
    J Biomech; 2014 May; 47(7):1582-7. PubMed ID: 24680920
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic compressive properties of articular cartilages in the porcine temporomandibular joint.
    Lamela MJ; Fernández P; Ramos A; Fernández-Canteli A; Tanaka E
    J Mech Behav Biomed Mater; 2013 Jul; 23():62-70. PubMed ID: 23660305
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultrasound speed varies in articular cartilage under indentation loading.
    Lötjönen P; Julkunen P; Tiitu V; Jurvelin JS; Töyräs J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Dec; 58(12):2772-80. PubMed ID: 23443716
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Indentation determined mechanoelectrochemical properties and fixed charge density of articular cartilage.
    Lu XL; Sun DD; Guo XE; Chen FH; Lai WM; Mow VC
    Ann Biomed Eng; 2004 Mar; 32(3):370-9. PubMed ID: 15095811
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A new mechanical indentation framework for functional assessment of articular cartilage.
    Arabshahi Z; Afara IO; Moody HR; Schrobback K; Kashani J; Fischer N; Oloyede A; Klein TJ
    J Mech Behav Biomed Mater; 2018 May; 81():83-94. PubMed ID: 29500981
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Finite deformation biphasic material properties of bovine articular cartilage from confined compression experiments.
    Ateshian GA; Warden WH; Kim JJ; Grelsamer RP; Mow VC
    J Biomech; 1997; 30(11-12):1157-64. PubMed ID: 9456384
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Viscoelastic properties of the pig temporomandibular joint articular soft tissues of the condyle and disc.
    Kuboki T; Shinoda M; Orsini MG; Yamashita A
    J Dent Res; 1997 Nov; 76(11):1760-9. PubMed ID: 9372793
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A feasibility study for evaluation of mechanical properties of articular cartilage with a two-electrode electrical impedance method.
    Morita Y; Kondo H; Tomita N; Suzuki S
    J Orthop Sci; 2012 May; 17(3):272-80. PubMed ID: 22427018
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experimental Study on Creep Characteristics of Microdefect Articular Cartilages in the Damaged Early Stage.
    Gong H; Men Y; Yang X; Li X; Zhang C
    J Healthc Eng; 2019; 2019():8526436. PubMed ID: 31827742
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of single-phase isotropic elastic and fibril-reinforced poroelastic models for indentation of rabbit articular cartilage.
    Julkunen P; Harjula T; Marjanen J; Helminen HJ; Jurvelin JS
    J Biomech; 2009 Mar; 42(5):652-6. PubMed ID: 19193381
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.