These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
900 related articles for article (PubMed ID: 25529017)
1. Applications of solid-phase microextraction and gas chromatography/mass spectrometry (SPME-GC/MS) in the study of grape and wine volatile compounds. Panighel A; Flamini R Molecules; 2014 Dec; 19(12):21291-309. PubMed ID: 25529017 [TBL] [Abstract][Full Text] [Related]
2. Headspace solid-phase microextraction-gas chromatography-mass spectrometry for profiling free volatile compounds in Cabernet Sauvignon grapes and wines. Canuti V; Conversano M; Calzi ML; Heymann H; Matthews MA; Ebeler SE J Chromatogr A; 2009 Apr; 1216(15):3012-22. PubMed ID: 19233370 [TBL] [Abstract][Full Text] [Related]
3. Optimisation of solid-phase microextraction combined with gas chromatography-mass spectrometry based methodology to establish the global volatile signature in pulp and skin of Vitis vinifera L. grape varieties. Perestrelo R; Barros AS; Rocha SM; Câmara JS Talanta; 2011 Sep; 85(3):1483-93. PubMed ID: 21807213 [TBL] [Abstract][Full Text] [Related]
4. Optimization of SPME-Arrow-GC/MS Method for Determination of Free and Bound Volatile Organic Compounds from Grape Skins. Šikuten I; Štambuk P; Karoglan Kontić J; Maletić E; Tomaz I; Preiner D Molecules; 2021 Dec; 26(23):. PubMed ID: 34885990 [TBL] [Abstract][Full Text] [Related]
5. Study of the influence of maceration time and oenological practices on the aroma profile of Vranec wines. Petropulos VI; Bogeva E; Stafilov T; Stefova M; Siegmund B; Pabi N; Lankmayr E Food Chem; 2014 Dec; 165():506-14. PubMed ID: 25038705 [TBL] [Abstract][Full Text] [Related]
6. Study of free and glycosidically bound volatile compounds in air-dried raisins from three seedless grape varieties using HS-SPME with GC-MS. Wang D; Cai J; Zhu BQ; Wu GF; Duan CQ; Chen G; Shi Y Food Chem; 2015 Jun; 177():346-53. PubMed ID: 25660896 [TBL] [Abstract][Full Text] [Related]
8. Development of a sensitive non-targeted method for characterizing the wine volatile profile using headspace solid-phase microextraction comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry. Robinson AL; Boss PK; Heymann H; Solomon PS; Trengove RD J Chromatogr A; 2011 Jan; 1218(3):504-17. PubMed ID: 21185026 [TBL] [Abstract][Full Text] [Related]
9. Evaluation of Volatile Metabolites Emitted In-Vivo from Cold-Hardy Grapes during Ripening Using SPME and GC-MS: A Proof-of-Concept. Rice S; Maurer DL; Fennell A; Dharmadhikari M; Koziel JA Molecules; 2019 Feb; 24(3):. PubMed ID: 30717185 [TBL] [Abstract][Full Text] [Related]
10. Optimizing extraction method of aroma compounds from grape pomace. Liang Z; Pai A; Liu D; Luo J; Wu J; Fang Z; Zhang P J Food Sci; 2020 Dec; 85(12):4225-4240. PubMed ID: 33190228 [TBL] [Abstract][Full Text] [Related]
11. Pinot noir wine volatile and anthocyanin composition under different levels of vine fruit zone leaf removal. Feng H; Skinkis PA; Qian MC Food Chem; 2017 Jan; 214():736-744. PubMed ID: 27507532 [TBL] [Abstract][Full Text] [Related]
12. Differentiation of wines according to grape variety and geographical origin based on volatiles profiling using SPME-MS and SPME-GC/MS methods. Ziółkowska A; Wąsowicz E; Jeleń HH Food Chem; 2016 Dec; 213():714-720. PubMed ID: 27451239 [TBL] [Abstract][Full Text] [Related]
13. Analysis of volatile compounds from Siraitia grosvenorii by headspace solid-phase microextraction and gas chromatography-quadrupole time-of-flight mass spectrometry. Xia Y; Zhang F; Wang W; Guo Y J Chromatogr Sci; 2015 Jan; 53(1):1-7. PubMed ID: 24668041 [TBL] [Abstract][Full Text] [Related]
14. Identification and quantification of impact aroma compounds in 4 nonfloral Vitis vinifera varieties grapes. Fan W; Xu Y; Jiang W; Li J J Food Sci; 2010; 75(1):S81-8. PubMed ID: 20492207 [TBL] [Abstract][Full Text] [Related]
15. Quantitative Profiling of Ester Compounds Using HS-SPME-GC-MS and Chemometrics for Assessing Volatile Markers of the Second Fermentation in Bottle. Muñoz-Redondo JM; Cuevas FJ; León JM; Ramírez P; Moreno-Rojas JM; Ruiz-Moreno MJ J Agric Food Chem; 2017 Apr; 65(13):2768-2775. PubMed ID: 28285522 [TBL] [Abstract][Full Text] [Related]
16. Chemometrical development and comprehensive validation of a solid phase microextraction/gas chromatography-mass spectrometry methodology for the determination of important free and bound primary aromatics in Greek wines. Metafa M; Economou A J Chromatogr A; 2013 Aug; 1305():244-58. PubMed ID: 23891382 [TBL] [Abstract][Full Text] [Related]
17. Volatile aroma compounds in wines from Chinese wild/hybrid species. Wei Z; Liu X; Huang Y; Lu J; Zhang Y J Food Biochem; 2019 Oct; 43(10):e12684. PubMed ID: 31608471 [TBL] [Abstract][Full Text] [Related]
18. Volatile composition of Merlot red wine and its contribution to the aroma: optimization and validation of analytical method. Arcari SG; Caliari V; Sganzerla M; Godoy HT Talanta; 2017 Nov; 174():752-766. PubMed ID: 28738652 [TBL] [Abstract][Full Text] [Related]
19. Comparison of the sensitivity of different aroma extraction techniques in combination with gas chromatography-mass spectrometry to detect minor aroma compounds in wine. Gamero A; Wesselink W; de Jong C J Chromatogr A; 2013 Jan; 1272():1-7. PubMed ID: 23245586 [TBL] [Abstract][Full Text] [Related]
20. Headspace solid-phase microextraction gas chromatography-mass spectrometry determination of volatile compounds in different varieties of African star apple fruit (Chrysophillum albidum). Lasekan O; Khatib A; Juhari H; Patiram P; Lasekan S Food Chem; 2013 Dec; 141(3):2089-97. PubMed ID: 23870932 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]