These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

321 related articles for article (PubMed ID: 25529067)

  • 1. The electronic structure calculations of two-dimensional transition-metal dichalcogenides in the presence of external electric and magnetic fields.
    Kuc A; Heine T
    Chem Soc Rev; 2015 May; 44(9):2603-14. PubMed ID: 25529067
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transition metal chalcogenides: ultrathin inorganic materials with tunable electronic properties.
    Heine T
    Acc Chem Res; 2015 Jan; 48(1):65-72. PubMed ID: 25489917
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electron transport in MoWSeS monolayers in the presence of an external electric field.
    Zibouche N; Philipsen P; Heine T; Kuc A
    Phys Chem Chem Phys; 2014 Jun; 16(23):11251-5. PubMed ID: 24776839
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Solid state theory. Quantum spin Hall effect in two-dimensional transition metal dichalcogenides.
    Qian X; Liu J; Fu L; Li J
    Science; 2014 Dec; 346(6215):1344-7. PubMed ID: 25504715
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of stacking order, layer number and external electric field on electronic structures of few-layer C2N-h2D.
    Zhang R; Li B; Yang J
    Nanoscale; 2015 Sep; 7(33):14062-70. PubMed ID: 26239535
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting a new phase (T'') of two-dimensional transition metal di-chalcogenides and strain-controlled topological phase transition.
    Ma F; Gao G; Jiao Y; Gu Y; Bilic A; Zhang H; Chen Z; Du A
    Nanoscale; 2016 Mar; 8(9):4969-75. PubMed ID: 26620395
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An optical spectroscopic study on two-dimensional group-VI transition metal dichalcogenides.
    Zeng H; Cui X
    Chem Soc Rev; 2015 May; 44(9):2629-42. PubMed ID: 25897845
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electronic structure and optical signatures of semiconducting transition metal dichalcogenide nanosheets.
    Zhao W; Ribeiro RM; Eda G
    Acc Chem Res; 2015 Jan; 48(1):91-9. PubMed ID: 25515381
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Switch effect of the nonquantized intrinsic spin Hall conductivity in monolayered monoclinic transition metal dichalcogenides.
    Lin X; Ni J
    J Phys Condens Matter; 2017 Jul; 29(29):295302. PubMed ID: 28541248
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Symmetry-breaking induced large piezoelectricity in Janus tellurene materials.
    Chen Y; Liu J; Yu J; Guo Y; Sun Q
    Phys Chem Chem Phys; 2019 Jan; 21(3):1207-1216. PubMed ID: 30565590
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spin-orbital effects in metal-dichalcogenide semiconducting monolayers.
    Reyes-Retana JA; Cervantes-Sodi F
    Sci Rep; 2016 Apr; 6():24093. PubMed ID: 27094967
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tuning the electronic properties of semiconducting transition metal dichalcogenides by applying mechanical strains.
    Johari P; Shenoy VB
    ACS Nano; 2012 Jun; 6(6):5449-56. PubMed ID: 22591011
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Magnetoluminescence and valley polarized state of a two-dimensional electron gas in WS2 monolayers.
    Scrace T; Tsai Y; Barman B; Schweidenback L; Petrou A; Kioseoglou G; Ozfidan I; Korkusinski M; Hawrylak P
    Nat Nanotechnol; 2015 Jul; 10(7):603-7. PubMed ID: 25961511
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Magnetoelectric effects and valley-controlled spin quantum gates in transition metal dichalcogenide bilayers.
    Gong Z; Liu GB; Yu H; Xiao D; Cui X; Xu X; Yao W
    Nat Commun; 2013; 4():2053. PubMed ID: 23784147
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanoscale Multilayer Transition-Metal Dichalcogenide Heterostructures: Band Gap Modulation by Interfacial Strain and Spontaneous Polarization.
    Kou L; Frauenheim T; Chen C
    J Phys Chem Lett; 2013 May; 4(10):1730-6. PubMed ID: 26282986
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two dimensional materials beyond MoS2: noble-transition-metal dichalcogenides.
    MirĂ³ P; Ghorbani-Asl M; Heine T
    Angew Chem Int Ed Engl; 2014 Mar; 53(11):3015-8. PubMed ID: 24554594
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thickness dependence of spin polarization and electronic structure of ultra-thin films of MoS2 and related transition-metal dichalcogenides.
    Chang TR; Lin H; Jeng HT; Bansil A
    Sci Rep; 2014 Sep; 4():6270. PubMed ID: 25189645
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Giant valley-Zeeman coupling in the surface layer of an intercalated transition metal dichalcogenide.
    Edwards B; Dowinton O; Hall AE; Murgatroyd PAE; Buchberger S; Antonelli T; Siemann GR; Rajan A; Morales EA; Zivanovic A; Bigi C; Belosludov RV; Polley CM; Carbone D; Mayoh DA; Balakrishnan G; Bahramy MS; King PDC
    Nat Mater; 2023 Apr; 22(4):459-465. PubMed ID: 36658327
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct electronic measurement of the spin Hall effect.
    Valenzuela SO; Tinkham M
    Nature; 2006 Jul; 442(7099):176-9. PubMed ID: 16838016
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A gate defined quantum dot on the two-dimensional transition metal dichalcogenide semiconductor WSe2.
    Song XX; Liu D; Mosallanejad V; You J; Han TY; Chen DT; Li HO; Cao G; Xiao M; Guo GC; Guo GP
    Nanoscale; 2015 Oct; 7(40):16867-73. PubMed ID: 26412019
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.