BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 25529683)

  • 1. The mechanism study in the interactions of sorghum procyanidins trimer with porcine pancreatic α-amylase.
    Cai X; Yu J; Xu L; Liu R; Yang J
    Food Chem; 2015 May; 174():291-8. PubMed ID: 25529683
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Study on interaction between human salivary α-amylase and sorghum procyanidin tetramer: Binding characteristics and structural analysis.
    Zhao L; Wang F; Lu Q; Liu R; Tian J; Huang Y
    Int J Biol Macromol; 2018 Oct; 118(Pt A):1136-1141. PubMed ID: 30001600
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigation the interaction between procyanidin dimer and α-amylase: Spectroscopic analyses and molecular docking simulation.
    Dai T; Chen J; Li Q; Li P; Hu P; Liu C; Li T
    Int J Biol Macromol; 2018 Jul; 113():427-433. PubMed ID: 29408006
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interaction between sorghum procyanidin tetramers and the catalytic region of glucosyltransferases-I from Streptococcus mutans UA159.
    Yu J; Yan F; Lu Q; Liu R
    Food Res Int; 2018 Oct; 112():152-159. PubMed ID: 30131122
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The mechanism of interactions between tea polyphenols and porcine pancreatic alpha-amylase: Analysis by inhibition kinetics, fluorescence quenching, differential scanning calorimetry and isothermal titration calorimetry.
    Sun L; Gidley MJ; Warren FJ
    Mol Nutr Food Res; 2017 Oct; 61(10):. PubMed ID: 28618113
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interaction mechanism between α-glucosidase and A-type trimer procyanidin revealed by integrated spectroscopic analysis techniques.
    Zhao L; Wen L; Lu Q; Liu R
    Int J Biol Macromol; 2020 Jan; 143():173-180. PubMed ID: 31816382
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative Study of the Interactions between Ovalbumin and five Antioxidants by Spectroscopic Methods.
    Li X; Yan Y
    J Fluoresc; 2017 Jan; 27(1):213-225. PubMed ID: 27722919
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tea polyphenols enhance binding of porcine pancreatic α-amylase with starch granules but reduce catalytic activity.
    Sun L; Gidley MJ; Warren FJ
    Food Chem; 2018 Aug; 258():164-173. PubMed ID: 29655719
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular study of mucin-procyanidin interaction by fluorescence quenching and Saturation Transfer Difference (STD)-NMR.
    Brandão E; Santos Silva M; García-Estévez I; Mateus N; de Freitas V; Soares S
    Food Chem; 2017 Aug; 228():427-434. PubMed ID: 28317744
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Understanding the binding of procyanidins to pancreatic elastase by experimental and computational methods.
    Brás NF; Gonçalves R; Fernandes PA; Mateus N; Ramos MJ; de Freitas V
    Biochemistry; 2010 Jun; 49(25):5097-108. PubMed ID: 20481639
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis and experimental/computational characterization of sorghum procyanidins-gelatin nanoparticles.
    Carmelo-Luna FJ; Mendoza-Wilson AM; Ramos-Clamont Montfort G; Lizardi-Mendoza J; Madera-Santana T; Lardizábal-Gutiérrez D; Quintana-Owen P
    Bioorg Med Chem; 2021 Jul; 42():116240. PubMed ID: 34116380
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Processing of sorghum (Sorghum bicolor) and sorghum products alters procyanidin oligomer and polymer distribution and content.
    Awika JM; Dykes L; Gu L; Rooney LW; Prior RL
    J Agric Food Chem; 2003 Aug; 51(18):5516-21. PubMed ID: 12926907
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vitro inhibition of pancreatic α-amylase by spherical and polygonal starch nanoparticles.
    Jiang S; Li M; Chang R; Xiong L; Sun Q
    Food Funct; 2018 Jan; 9(1):355-363. PubMed ID: 29206258
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biological relevance of the interaction between procyanidins and trypsin: a multitechnique approach.
    Gonçalves R; Mateus N; de Freitas V
    J Agric Food Chem; 2010 Nov; 58(22):11924-31. PubMed ID: 21047067
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of carbohydrates on the interaction of procyanidin B3 with trypsin.
    Gonçalves R; Mateus N; De Freitas V
    J Agric Food Chem; 2011 Nov; 59(21):11794-802. PubMed ID: 21950419
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Construction of functional soybean peptide-cyclodextrin carboxylate nanoparticles and their interaction with porcine pancreatic α-amylase.
    Liu Y; Li X; Sang S; Julian McClements D; Chen L; Long J; Jiao A; Wang J; Xu X; Jin Z; Qiu C
    Food Res Int; 2022 Dec; 162(Pt B):112054. PubMed ID: 36461314
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three flavanols delay starch digestion by inhibiting α-amylase and binding with starch.
    Jiang C; Chen Y; Ye X; Wang L; Shao J; Jing H; Jiang C; Wang H; Ma C
    Int J Biol Macromol; 2021 Mar; 172():503-514. PubMed ID: 33454330
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interaction between lysozyme and procyanidin: multilevel structural nature and effect of carbohydrates.
    Liang M; Liu R; Qi W; Su R; Yu Y; Wang L; He Z
    Food Chem; 2013 Jun; 138(2-3):1596-603. PubMed ID: 23411286
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chiral recognition of apple procyanidins by complexation with oxotitanium phthalocyanine.
    Muranaka A; Yoshida K; Shoji T; Moriichi N; Masumoto S; Kanda T; Ohtake Y; Kobayashi N
    Org Lett; 2006 Jun; 8(12):2447-50. PubMed ID: 16737285
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interaction of different polyphenols with bovine serum albumin (BSA) and human salivary alpha-amylase (HSA) by fluorescence quenching.
    Soares S; Mateus N; Freitas Vd
    J Agric Food Chem; 2007 Aug; 55(16):6726-35. PubMed ID: 17636939
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.