These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
151 related articles for article (PubMed ID: 25529693)
21. Cellular, biological, and physicochemical basis for the hard-to-cook defect in legume seeds. Liu K Crit Rev Food Sci Nutr; 1995 Jul; 35(4):263-98. PubMed ID: 7576160 [TBL] [Abstract][Full Text] [Related]
22. Can sprouting reduce phytate and improve the nutritional composition and nutrient bioaccessibility in cereals and legumes? Elliott H; Woods P; Green BD; Nugent AP Nutr Bull; 2022 Jun; 47(2):138-156. PubMed ID: 36045098 [TBL] [Abstract][Full Text] [Related]
23. Use of two varieties of hard-to-cook beans (Phaseolus vulgaris) and cowpeas (Vigna unguiculata) in the processing of koki (a steamed legume product). Mbofung CM; Rigby N; Waldron K Plant Foods Hum Nutr; 1999; 54(2):131-50. PubMed ID: 10646560 [TBL] [Abstract][Full Text] [Related]
24. The impact of postharvest storage and cooking time on mineral bioaccessibility in common beans. Rousseau S; Celus M; Duijsens D; Gwala S; Hendrickx M; Grauwet T Food Funct; 2020 Sep; 11(9):7584-7595. PubMed ID: 32821894 [TBL] [Abstract][Full Text] [Related]
25. Kinetics of phytate hydrolysis during storage of red kidney beans and the implication in hard-to-cook development. Wainaina I; Wafula E; Van Loey A; Sila D; Hendrickx M; Kyomugasho C Food Res Int; 2022 Sep; 159():111581. PubMed ID: 35940757 [TBL] [Abstract][Full Text] [Related]
26. Detailed analysis of seed coat and cotyledon reveals molecular understanding of the hard-to-cook defect of common beans (Phaseolus vulgaris L.). Yi J; Njoroge DM; Sila DN; Kinyanjui PK; Christiaens S; Bi J; Hendrickx ME Food Chem; 2016 Nov; 210():481-90. PubMed ID: 27211674 [TBL] [Abstract][Full Text] [Related]
28. [Correlation analysis of mineral content and cooking quality from 20 broad bean varieties]. Liu M; Tan HZ; Tian XH; Tan B Guang Pu Xue Yu Guang Pu Fen Xi; 2010 Aug; 30(8):2269-73. PubMed ID: 20939354 [TBL] [Abstract][Full Text] [Related]
29. Insight into pectin-cation-phytate theory of hardening in common bean varieties with different sensitivities to hard-to-cook. Wainaina I; Lugumira R; Wafula E; Kyomugasho C; Sila D; Hendrickx M Food Res Int; 2022 Jan; 151():110862. PubMed ID: 34980398 [TBL] [Abstract][Full Text] [Related]
30. Nutritive Evaluation of the Bambara Groundnut Ci12 Landrace [Vigna subterranea (L.) Verdc. (Fabaceae)] Produced in Côte d'Ivoire. Yao DN; Kouassi KN; Erba D; Scazzina F; Pellegrini N; Casiraghi MC Int J Mol Sci; 2015 Sep; 16(9):21428-41. PubMed ID: 26370971 [TBL] [Abstract][Full Text] [Related]
31. Genetic diversity for seed mineral composition in the wild legume Teramnus labialis. Grusak MA Plant Foods Hum Nutr; 2008 Sep; 63(3):105-9. PubMed ID: 18563569 [TBL] [Abstract][Full Text] [Related]
32. Effects of aqueous soaking on the phytate and mineral contents and phytate:mineral ratios of wholegrain normal sorghum and maize and low phytate sorghum. Kruger J; Oelofse A; Taylor JR Int J Food Sci Nutr; 2014 Aug; 65(5):539-46. PubMed ID: 24524560 [TBL] [Abstract][Full Text] [Related]
33. Chemical and nutritional changes associated with the development of the hard-to-cook defect in common beans. Nyakuni GA; Kikafunda JK; Muyonga JH; Kyamuhangire WM; Nakimbugwe D; Ugen M Int J Food Sci Nutr; 2008; 59(7-8):652-9. PubMed ID: 19382337 [TBL] [Abstract][Full Text] [Related]
34. Genetic control and transgressive segregation of zinc, iron, potassium, phosphorus, calcium, and sodium accumulation in cowpea (Vigna unguiculata) seeds. Fernandes Santos CA; Boiteux LS Genet Mol Res; 2015 Jan; 14(1):259-68. PubMed ID: 25729958 [TBL] [Abstract][Full Text] [Related]
35. Supplementation of alkaline phytase (Ds11) in whole-wheat bread reduces phytate content and improves mineral solubility. Park YJ; Park J; Park KH; Oh BC; Auh JH J Food Sci; 2011 Aug; 76(6):C791-4. PubMed ID: 21623782 [TBL] [Abstract][Full Text] [Related]
36. Effect of phytate reduction of sorghum, through genetic modification, on iron and zinc availability as assessed by an in vitro dialysability bioaccessibility assay, Caco-2 cell uptake assay, and suckling rat pup absorption model. Kruger J; Taylor JR; Du X; De Moura FF; Lönnerdal B; Oelofse A Food Chem; 2013 Nov; 141(2):1019-25. PubMed ID: 23790881 [TBL] [Abstract][Full Text] [Related]
37. Trait stacking simultaneously enhances provitamin A carotenoid and mineral bioaccessibility in biofortified Dzakovich MP; Debelo H; Albertsen MC; Che P; Jones TJ; Simon MK; Zhao ZY; Glassman K; Ferruzzi MG Food Funct; 2023 Jul; 14(15):7053-7065. PubMed ID: 37449680 [TBL] [Abstract][Full Text] [Related]
38. Phytase from Citrobacter koseri PM-7: Enhanced production using statistical method and application in ameliorating mineral bioaccessibility and protein digestibility of high-phytate food. Tripathi P; A JL; Kapoor M Prep Biochem Biotechnol; 2018 Jan; 48(1):84-91. PubMed ID: 29194015 [TBL] [Abstract][Full Text] [Related]
39. Nutritional and sensory evaluation of akara made from blends of cowpea and hard-to-cook mottled brown dry beans. Mbofung CM; Rigby N; Waldron KW J Agric Food Chem; 1999 Dec; 47(12):5232-8. PubMed ID: 10606601 [TBL] [Abstract][Full Text] [Related]