These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
322 related articles for article (PubMed ID: 25530110)
1. Permissive expansion and homing of adoptively transferred T cells in tumor-bearing hosts. Perez C; Jukica A; Listopad JJ; Anders K; Kühl AA; Loddenkemper C; Blankenstein T; Charo J Int J Cancer; 2015 Jul; 137(2):359-71. PubMed ID: 25530110 [TBL] [Abstract][Full Text] [Related]
2. Visualizing the dynamic of adoptively transferred T cells during the rejection of large established tumors. Charo J; Perez C; Buschow C; Jukica A; Czeh M; Blankenstein T Eur J Immunol; 2011 Nov; 41(11):3187-97. PubMed ID: 21898380 [TBL] [Abstract][Full Text] [Related]
3. A Transgenic Dual-Luciferase Reporter Mouse for Longitudinal and Functional Monitoring of T Cells Szyska M; Herda S; Althoff S; Heimann A; Russ J; D'Abundo D; Dang TM; Durieux I; Dörken B; Blankenstein T; Na IK Cancer Immunol Res; 2018 Jan; 6(1):110-120. PubMed ID: 29259004 [TBL] [Abstract][Full Text] [Related]
5. Blockade of Programmed Death 1 Augments the Ability of Human T Cells Engineered to Target NY-ESO-1 to Control Tumor Growth after Adoptive Transfer. Moon EK; Ranganathan R; Eruslanov E; Kim S; Newick K; O'Brien S; Lo A; Liu X; Zhao Y; Albelda SM Clin Cancer Res; 2016 Jan; 22(2):436-47. PubMed ID: 26324743 [TBL] [Abstract][Full Text] [Related]
6. Dendritic cell internalization of α-galactosylceramide from CD8 T cells induces potent antitumor CD8 T-cell responses. Choi DH; Kim KS; Yang SH; Chung DH; Song B; Sprent J; Cho JH; Sung YC Cancer Res; 2011 Dec; 71(24):7442-51. PubMed ID: 22028323 [TBL] [Abstract][Full Text] [Related]
7. Adoptively transferred tumor-specific T cells stimulated ex vivo using herpes simplex virus amplicons encoding 4-1BBL persist in the host and show antitumor activity in vivo. Yi KH; Nechushtan H; Bowers WJ; Walker GR; Zhang Y; Pham DG; Podack ER; Federoff HJ; Tolba KA; Rosenblatt JD Cancer Res; 2007 Oct; 67(20):10027-37. PubMed ID: 17942937 [TBL] [Abstract][Full Text] [Related]
8. Engineering T cells for adoptive therapy: outsmarting the tumor. Kunert A; Debets R Curr Opin Immunol; 2018 Apr; 51():133-139. PubMed ID: 29579622 [TBL] [Abstract][Full Text] [Related]
9. Monitoring the efficacy of adoptively transferred prostate cancer-targeted human T lymphocytes with PET and bioluminescence imaging. Dobrenkov K; Olszewska M; Likar Y; Shenker L; Gunset G; Cai S; Pillarsetty N; Hricak H; Sadelain M; Ponomarev V J Nucl Med; 2008 Jul; 49(7):1162-70. PubMed ID: 18552144 [TBL] [Abstract][Full Text] [Related]
10. Efficient eradication of subcutaneous but not of autochthonous gastric tumors by adoptive T cell transfer in an SV40 T antigen mouse model. Bourquin C; von der Borch P; Zoglmeier C; Anz D; Sandholzer N; Suhartha N; Wurzenberger C; Denzel A; Kammerer R; Zimmermann W; Endres S J Immunol; 2010 Aug; 185(4):2580-8. PubMed ID: 20644173 [TBL] [Abstract][Full Text] [Related]
11. Human effector T cells derived from central memory cells rather than CD8(+)T cells modified by tumor-specific TCR gene transfer possess superior traits for adoptive immunotherapy. Wu F; Zhang W; Shao H; Bo H; Shen H; Li J; Liu Y; Wang T; Ma W; Huang S Cancer Lett; 2013 Oct; 339(2):195-207. PubMed ID: 23791878 [TBL] [Abstract][Full Text] [Related]
12. Different lineages of P1A-expressing cancer cells use divergent modes of immune evasion for T-cell adoptive therapy. Bai XF; Liu JQ; Joshi PS; Wang L; Yin L; Labanowska J; Heerema N; Zheng P; Liu Y Cancer Res; 2006 Aug; 66(16):8241-9. PubMed ID: 16912204 [TBL] [Abstract][Full Text] [Related]
13. Rapid Construction of Antitumor T-cell Receptor Vectors from Frozen Tumors for Engineered T-cell Therapy. Tsuji T; Yoneda A; Matsuzaki J; Miliotto A; Ryan C; Koya RC; Odunsi K Cancer Immunol Res; 2018 May; 6(5):594-604. PubMed ID: 29588318 [TBL] [Abstract][Full Text] [Related]
16. Human T cells engineered to express a programmed death 1/28 costimulatory retargeting molecule display enhanced antitumor activity. Ankri C; Shamalov K; Horovitz-Fried M; Mauer S; Cohen CJ J Immunol; 2013 Oct; 191(8):4121-9. PubMed ID: 24026081 [TBL] [Abstract][Full Text] [Related]
17. Targeted elimination of prostate cancer by genetically directed human T lymphocytes. Gade TP; Hassen W; Santos E; Gunset G; Saudemont A; Gong MC; Brentjens R; Zhong XS; Stephan M; Stefanski J; Lyddane C; Osborne JR; Buchanan IM; Hall SJ; Heston WD; Rivière I; Larson SM; Koutcher JA; Sadelain M Cancer Res; 2005 Oct; 65(19):9080-8. PubMed ID: 16204083 [TBL] [Abstract][Full Text] [Related]
18. Cancer immunotherapy with lymphocytes genetically engineered with T cell receptors for solid cancers. Chen L; Qiao D; Wang J; Tian G; Wang M Immunol Lett; 2019 Dec; 216():51-62. PubMed ID: 31597088 [TBL] [Abstract][Full Text] [Related]
19. Synergistic effect of lymphotactin and interferon gamma-inducible protein-10 transgene expression in T-cell localization and adoptive T-cell therapy of tumors. Huang H; Xiang J Int J Cancer; 2004 May; 109(6):817-25. PubMed ID: 15027114 [TBL] [Abstract][Full Text] [Related]
20. Efficacy of CAR T-cell therapy in large tumors relies upon stromal targeting by IFNγ. Textor A; Listopad JJ; Wührmann LL; Perez C; Kruschinski A; Chmielewski M; Abken H; Blankenstein T; Charo J Cancer Res; 2014 Dec; 74(23):6796-805. PubMed ID: 25297631 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]