BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 25530453)

  • 1. Chondrogenic regeneration using bone marrow clots and a porous polycaprolactone-hydroxyapatite scaffold by three-dimensional printing.
    Yao Q; Wei B; Liu N; Li C; Guo Y; Shamie AN; Chen J; Tang C; Jin C; Xu Y; Bian X; Zhang X; Wang L
    Tissue Eng Part A; 2015 Apr; 21(7-8):1388-97. PubMed ID: 25530453
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Dopamine modified and cartilage derived morphogenetic protein 1 laden polycaprolactone-hydroxyapatite composite scaffolds fabricated by three-dimensional printing improve chondrogenic differentiation of human bone marrow mesenchymal stem cells].
    Xu Y; Wei B; Zhou J; Yao Q; Wang L; Na J
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2018 Feb; 32(2):215-222. PubMed ID: 29806415
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Rabbit Model of Osteochondral Regeneration Using Three-Dimensional Printed Polycaprolactone-Hydroxyapatite Scaffolds Coated with Umbilical Cord Blood Mesenchymal Stem Cells and Chondrocytes.
    Zheng P; Hu X; Lou Y; Tang K
    Med Sci Monit; 2019 Oct; 25():7361-7369. PubMed ID: 31570688
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three-Dimensional Printing of Polycaprolactone/Nano-Hydroxyapatite Composite Scaffolds with a Pore Size of 300/500 µm is Histocompatible and Promotes Osteogenesis Using Rabbit Cortical Bone Marrow Stem Cells.
    Yang Y; Qiu B; Zhou Z; Hu C; Li J; Zhou C
    Ann Transplant; 2023 Oct; 28():e940365. PubMed ID: 37904328
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functionalized 3D Hydroxyapatite Scaffold by Fusion Peptides-Mediated Small Extracellular Vesicles of Stem Cells for Bone Tissue Regeneration.
    Ma S; Ma B; Yang Y; Mu Y; Wei P; Yu X; Zhao B; Zou Z; Liu Z; Wang M; Deng J
    ACS Appl Mater Interfaces; 2024 Jan; 16(3):3064-3081. PubMed ID: 38215277
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biomimetic Hydroxyapatite on 3D-Printed Nanoattapulgite/Polycaprolactone Scaffolds for Bone Regeneration of Rat Cranium Defects.
    Dai T; Wu X; Liu C; Ni S; Li J; Zhang L; Wang J; Tan Y; Fan S; Zhao H
    ACS Biomater Sci Eng; 2024 Jan; 10(1):455-467. PubMed ID: 38146624
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication of Three-Dimensional Composite Scaffold for Simultaneous Alveolar Bone Regeneration in Dental Implant Installation.
    Jeong HJ; Gwak SJ; Seo KD; Lee S; Yun JH; Cho YS; Lee SJ
    Int J Mol Sci; 2020 Mar; 21(5):. PubMed ID: 32182824
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wet 3D printing of biodegradable porous scaffolds to enable room-temperature deposition modeling of polymeric solutions for regeneration of articular cartilage.
    Yu X; Wang P; Gao J; Fu Y; Wang Q; Chen J; Chen S; Ding J
    Biofabrication; 2024 Apr; 16(3):. PubMed ID: 38569492
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid mineralization of graphene-based 3D porous scaffolds by semi-dry electrodeposition for photothermal treatment of tumor-induced bone defects.
    Nie W; Dai X; Copus JS; Kengla C; Xie R; Seeds M; Atala A; He C
    Acta Biomater; 2022 Nov; 153():573-584. PubMed ID: 36130660
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comprehensive bench-to-bed look into the application of gamma-sterilized 3D-printed polycaprolactone/hydroxyapatite implants for craniomaxillofacial defects, an in vitro, in vivo, and clinical study.
    Babaei M; Ebrahim-Najafabadi N; Mirzadeh M; Abdali H; Farnaghi M; Gharavi MK; Kheradmandfard M; Kharazi AZ; Poursamar SA
    Biomater Adv; 2024 Jul; 161():213900. PubMed ID: 38772132
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Triple-layered scaffold containing cisplatin and curcumin applied for cancerous bone regeneration.
    Thepsri N; Kaewsrichan J
    J Biomater Appl; 2023 Oct; 38(4):500-508. PubMed ID: 37620997
    [TBL] [Abstract][Full Text] [Related]  

  • 12.
    Laubach M; Herath B; Bock N; Suresh S; Saifzadeh S; Dargaville BL; McGovern J; Wille ML; Hutmacher DW; Medeiros Savi F
    Front Bioeng Biotechnol; 2023; 11():1272348. PubMed ID: 37860627
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Alginate Improves the Chondrogenic Capacity of 3D PCL Scaffolds In Vitro: A Histological Approach.
    Milián L; Oliver-Ferrándiz M; Peregrín I; Sancho-Tello M; Martín-de-Llano JJ; Martínez-Ramos C; Carda C; Mata M
    Curr Issues Mol Biol; 2024 Apr; 46(4):3563-3578. PubMed ID: 38666953
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of piezoelectric cells printing on three-dimensional porous bioceramic scaffold for bone regeneration.
    Shie MY; Fang HY; Lin YH; Lee AK; Yu J; Chen YW
    Int J Bioprint; 2019; 5(2.1):210. PubMed ID: 32596544
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Zoledronate loaded polylactic acid/polycaprolactone/hydroxyapatite scaffold accelerates regeneration and led to enhance structural performance and functional ability of the radial bone defect in rat.
    Oryan A; Hassanajili S; Sahvieh S
    Iran J Vet Res; 2023; 24(2):122-125. PubMed ID: 37790115
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chondrogenic medium in combination with a c-Jun N-terminal kinase inhibitor mediates engineered cartilage regeneration by regulating matrix metabolism and cell proliferation.
    Zhang P; Wang Q; Chen J; Ci Z; Zhang W; Liu Y; Wang X; Zhou G
    Regen Biomater; 2023; 10():rbad079. PubMed ID: 38020237
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comment on: fibronectin in tissue regeneration: timely disassembly of the scaffold is necessary to complete the build.
    Moroz A
    Cell Mol Life Sci; 2013 Nov; 70(22):4255-6. PubMed ID: 23974245
    [No Abstract]   [Full Text] [Related]  

  • 18. Author's reply to: Comment on: Fibronectin in tissue regeneration: timely disassembly of the scaffold is necessary to complete the build.
    Stoffels JM; Zhao C; Baron W
    Cell Mol Life Sci; 2013 Nov; 70(22):4257. PubMed ID: 23974246
    [No Abstract]   [Full Text] [Related]  

  • 19. Correction to "Functionalized 3D Hydroxyapatite Scaffold by Fusion Peptides-Mediated Small Extracellular Vesicles of Stem Cells for Bone Tissue Regeneration".
    Ma S; Ma B; Yang Y; Mu Y; Wei P; Yu X; Zhao B; Zou Z; Liu Z; Wang M; Deng J
    ACS Appl Mater Interfaces; 2024 Mar; 16(11):14382-14383. PubMed ID: 38448795
    [No Abstract]   [Full Text] [Related]  

  • 20. Design, construction and mechanical testing of digital 3D anatomical data-based PCL-HA bone tissue engineering scaffold.
    Yao Q; Wei B; Guo Y; Jin C; Du X; Yan C; Yan J; Hu W; Xu Y; Zhou Z; Wang Y; Wang L
    J Mater Sci Mater Med; 2015 Jan; 26(1):5360. PubMed ID: 25596860
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.