These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Improving the biological activity of the antimicrobial peptide anoplin by membrane anchoring through a lipophilic amino acid derivative. Slootweg JC; van Schaik TB; Quarles van Ufford HL; Breukink E; Liskamp RM; Rijkers DT Bioorg Med Chem Lett; 2013 Jul; 23(13):3749-52. PubMed ID: 23719232 [TBL] [Abstract][Full Text] [Related]
4. Design of novel analogues of short antimicrobial peptide anoplin with improved antimicrobial activity. Wang Y; Chen J; Zheng X; Yang X; Ma P; Cai Y; Zhang B; Chen Y J Pept Sci; 2014 Dec; 20(12):945-51. PubMed ID: 25316570 [TBL] [Abstract][Full Text] [Related]
5. Effect of point mutations on the secondary structure and membrane interaction of antimicrobial peptide anoplin. Won A; Pripotnev S; Ruscito A; Ianoul A J Phys Chem B; 2011 Mar; 115(10):2371-9. PubMed ID: 21338137 [TBL] [Abstract][Full Text] [Related]
7. Structural and functional characterization of two genetically related meucin peptides highlights evolutionary divergence and convergence in antimicrobial peptides. Gao B; Sherman P; Luo L; Bowie J; Zhu S FASEB J; 2009 Apr; 23(4):1230-45. PubMed ID: 19088182 [TBL] [Abstract][Full Text] [Related]
8. Hainanenins: a novel family of antimicrobial peptides with strong activity from Hainan cascade-frog, Amolops hainanensis. Zhang S; Guo H; Shi F; Wang H; Li L; Jiao X; Wang Y; Yu H Peptides; 2012 Feb; 33(2):251-7. PubMed ID: 22306820 [TBL] [Abstract][Full Text] [Related]
9. Effects of truncation of the peptide chain on the secondary structure and bioactivities of palmitoylated anoplin. Salas RL; Garcia JKDL; Miranda ACR; Rivera WL; Nellas RB; Sabido PMG Peptides; 2018 Jun; 104():7-14. PubMed ID: 29614317 [TBL] [Abstract][Full Text] [Related]
10. Synthesis and biological activity of lipophilic analogs of the cationic antimicrobial active peptide anoplin. Chionis K; Krikorian D; Koukkou AI; Sakarellos-Daitsiotis M; Panou-Pomonis E J Pept Sci; 2016 Nov; 22(11-12):731-736. PubMed ID: 27862650 [TBL] [Abstract][Full Text] [Related]
12. Strategies for transformation of naturally-occurring amphibian antimicrobial peptides into therapeutically valuable anti-infective agents. Conlon JM; Al-Ghaferi N; Abraham B; Leprince J Methods; 2007 Aug; 42(4):349-57. PubMed ID: 17560323 [TBL] [Abstract][Full Text] [Related]
13. Rational design of tryptophan-rich antimicrobial peptides with enhanced antimicrobial activities and specificities. Yu HY; Huang KC; Yip BS; Tu CH; Chen HL; Cheng HT; Cheng JW Chembiochem; 2010 Nov; 11(16):2273-82. PubMed ID: 20865718 [TBL] [Abstract][Full Text] [Related]
14. Membrane active antimicrobial activity and molecular dynamics study of a novel cationic antimicrobial peptide polybia-MPI, from the venom of Polybia paulista. Wang K; Yan J; Dang W; Liu X; Chen R; Zhang J; Zhang B; Zhang W; Kai M; Yan W; Yang Z; Xie J; Wang R Peptides; 2013 Jan; 39():80-8. PubMed ID: 23159560 [TBL] [Abstract][Full Text] [Related]
15. Structural characterization of de novo designed L5K5W model peptide isomers with potent antimicrobial and varied hemolytic activities. Kim SJ; Kim JS; Lee YS; Sim DW; Lee SH; Bahk YY; Lee KH; Kim EH; Park SJ; Lee BJ; Won HS Molecules; 2013 Jan; 18(1):859-76. PubMed ID: 23344198 [TBL] [Abstract][Full Text] [Related]
16. Designed antimicrobial and antitumor peptides with high selectivity. Hu J; Chen C; Zhang S; Zhao X; Xu H; Zhao X; Lu JR Biomacromolecules; 2011 Nov; 12(11):3839-43. PubMed ID: 21955251 [TBL] [Abstract][Full Text] [Related]