These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 2553075)

  • 1. Snake venom components and their cross-reactivity: a review.
    Berger BJ; Bhatti AR
    Biochem Cell Biol; 1989 Sep; 67(9):597-601. PubMed ID: 2553075
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Antibodies to a fragment of the Bothrops moojenil-amino acid oxidase cross-react with snake venom components unrelated to the parent protein.
    Stábeli RG; Magalhães LM; Selistre-de-Araujo HS; Oliveira EB
    Toxicon; 2005 Sep; 46(3):308-17. PubMed ID: 16026810
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Snake venom action: are enzymes involved in it?
    Zeller AE
    Experientia; 1977 Feb; 33(2):143-50. PubMed ID: 191284
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enzymatic activities and other characteristics of Crotalus durissus cumanensis venom.
    Grillo Rodriguez O; Scannone HR; Parra ND
    Toxicon; 1974 May; 12(3):297-302. PubMed ID: 4376285
    [No Abstract]   [Full Text] [Related]  

  • 5. A comparative study of cobra (Naja) venom enzymes.
    Tan NH; Tan CS
    Comp Biochem Physiol B; 1988; 90(4):745-50. PubMed ID: 2854766
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A brief review of the scientific history of several lesser-known snake venom proteins: l-amino acid oxidases, hyaluronidases and phosphodiesterases.
    Fox JW
    Toxicon; 2013 Feb; 62():75-82. PubMed ID: 23010165
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Biochemical and immunological research on snake venom. II. Study of the enzymatic and toxic properties of the fractions obtained by filtration of the venom of Naja nigricollis on sephadex].
    Bouquet P; Izard Y; Meaume J; Jouannet M; Ronsseray AM; Dumarey C; Ozenne S; Casseault S
    Ann Inst Pasteur (Paris); 1967 Feb; 112(2):213-35. PubMed ID: 4291718
    [No Abstract]   [Full Text] [Related]  

  • 8. The conserved structure of snake venom toxins confers extensive immunological cross-reactivity to toxin-specific antibody.
    Harrison RA; Wüster W; Theakston RD
    Toxicon; 2003 Mar; 41(4):441-9. PubMed ID: 12657313
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of venom (Duvernoy's secretion) from twelve species of colubrid snakes and partial sequence of four venom proteins.
    Hill RE; Mackessy SP
    Toxicon; 2000 Dec; 38(12):1663-87. PubMed ID: 10858509
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An overview of the immune modulating effects of enzymatic toxins from snake venoms.
    Burin SM; Menaldo DL; Sampaio SV; Frantz FG; Castro FA
    Int J Biol Macromol; 2018 Apr; 109():664-671. PubMed ID: 29274419
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The molecular basis of cross-reactivity in the Australian Snake Venom Detection Kit (SVDK).
    Steuten J; Winkel K; Carroll T; Williamson NA; Ignjatovic V; Fung K; Purcell AW; Fry BG
    Toxicon; 2007 Dec; 50(8):1041-52. PubMed ID: 17904179
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An investigation into the antigenic cross-reactivity of Ophiophagus hannah (king cobra) venom neurotoxin, phospholipase A2, hemorrhagin and L-amino acid oxidase using enzyme-linked immunosorbent assay.
    Tan NH; Lim KK; Jaafar MI
    Toxicon; 1993 Jul; 31(7):865-72. PubMed ID: 8212031
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Accumulation of some secretory enzymes in venom glands of Vipera palaestinae.
    Brown RS; Brown MB; Bdolah A; Kochva E
    Am J Physiol; 1975 Dec; 229(6):1675-9. PubMed ID: 174447
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tests for detection of snake venoms, toxins and venom antibodies: review on recent trends (1987-1997).
    Selvanayagam ZE; Gopalakrishnakone P
    Toxicon; 1999 Apr; 37(4):565-86. PubMed ID: 10082159
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antigenic cross reactivity among the venoms and toxins from unrelated diverse sources.
    Lipps BV; Khan AA
    Toxicon; 2000 Jul; 38(7):973-80. PubMed ID: 10728834
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fractionation of red diamond rattlesnake (Crotalus ruber ruber) venom: protease, phosphodiesterase, L-amino acid oxidase activities and effects of metal ions and inhibitors on protease activity.
    Mackessy SP
    Toxicon; 1985; 23(2):337-40. PubMed ID: 2992122
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pharmacological and biochemical properties of a venom gland extract from the snake Thelotornis kirtlandi.
    Kornalik F; Táborská E; Mebs D
    Toxicon; 1978; 16(6):535-42. PubMed ID: 31712
    [No Abstract]   [Full Text] [Related]  

  • 18. Multiple molecular forms of snake venom phosphodiesterase from Vipera palastinae.
    Levy Z; Bdolah A
    Toxicon; 1976 Aug; 14(5):389-91. PubMed ID: 185753
    [No Abstract]   [Full Text] [Related]  

  • 19. Fractionation of Cerastes cerastes and Cerastes vipera snake venoms by gel filtration and identification of some enzymatic and biological activities.
    Labib RS; Halim HY; Farag NW
    Toxicon; 1979; 17(4):337-45. PubMed ID: 227146
    [No Abstract]   [Full Text] [Related]  

  • 20. Cross-neutralizations of phospholipase A2 neurotoxins from snake venoms.
    Middlebrook JL
    Toxicon; 1991; 29(12):1481-7. PubMed ID: 1801325
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.