These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. The improvement of cell infiltration in an electrospun scaffold with multiple synthetic biodegradable polymers using sacrificial PEO microparticles. Hodge J; Quint C J Biomed Mater Res A; 2019 Sep; 107(9):1954-1964. PubMed ID: 31033146 [TBL] [Abstract][Full Text] [Related]
5. Improved porosity of electrospun poly (Lactic-Co-Glycolic) scaffolds by sacrificial microparticles enhances cellular infiltration compared to sacrificial microfiber. Hodge JG; Quint C J Biomater Appl; 2022 Jul; 37(1):77-88. PubMed ID: 35317691 [TBL] [Abstract][Full Text] [Related]
6. Three-dimensional endothelial cell incorporation within bioactive nanofibrous scaffolds through concurrent emulsion electrospinning and coaxial cell electrospraying. Zhao Q; Zhou Y; Wang M Acta Biomater; 2021 Mar; 123():312-324. PubMed ID: 33508508 [TBL] [Abstract][Full Text] [Related]
7. Fabrication of large pores in electrospun nanofibrous scaffolds for cellular infiltration: a review. Zhong S; Zhang Y; Lim CT Tissue Eng Part B Rev; 2012 Apr; 18(2):77-87. PubMed ID: 21902623 [TBL] [Abstract][Full Text] [Related]
8. Cellular infiltration on nanofibrous scaffolds using a modified electrospinning technique. Shabani I; Haddadi-Asl V; Seyedjafari E; Soleimani M Biochem Biophys Res Commun; 2012 Jun; 423(1):50-4. PubMed ID: 22618233 [TBL] [Abstract][Full Text] [Related]
9. Electrospun polycaprolactone scaffolds with tailored porosity using two approaches for enhanced cellular infiltration. Zander NE; Orlicki JA; Rawlett AM; Beebe TP J Mater Sci Mater Med; 2013 Jan; 24(1):179-87. PubMed ID: 23053801 [TBL] [Abstract][Full Text] [Related]
10. Three-dimensional electrospun nanofibrous scaffolds for bone tissue engineering. Lin W; Chen M; Qu T; Li J; Man Y J Biomed Mater Res B Appl Biomater; 2020 May; 108(4):1311-1321. PubMed ID: 31436374 [TBL] [Abstract][Full Text] [Related]
11. Electrospun chitosan-alginate nanofibers with in situ polyelectrolyte complexation for use as tissue engineering scaffolds. Jeong SI; Krebs MD; Bonino CA; Samorezov JE; Khan SA; Alsberg E Tissue Eng Part A; 2011 Jan; 17(1-2):59-70. PubMed ID: 20672984 [TBL] [Abstract][Full Text] [Related]
12. Acrylonitrile and Pullulan Based Nanofiber Mats as Easily Accessible Scaffolds for 3D Skin Cell Models Containing Primary Cells. Rimann M; Jüngel A; Mousavi S; Moeschlin N; Calcagni M; Wuertz-Kozak K; Brunner F; Dudli S; Distler O; Adlhart C Cells; 2022 Jan; 11(3):. PubMed ID: 35159255 [TBL] [Abstract][Full Text] [Related]
13. Examining the formulation of emulsion electrospinning for improving the release of bioactive proteins from electrospun fibers. Briggs T; Arinzeh TL J Biomed Mater Res A; 2014 Mar; 102(3):674-84. PubMed ID: 23554256 [TBL] [Abstract][Full Text] [Related]
14. Controlling the porosity of fibrous scaffolds by modulating the fiber diameter and packing density. Soliman S; Sant S; Nichol JW; Khabiry M; Traversa E; Khademhosseini A J Biomed Mater Res A; 2011 Mar; 96(3):566-74. PubMed ID: 21254388 [TBL] [Abstract][Full Text] [Related]
15. Improved cellular infiltration into nanofibrous electrospun cross-linked gelatin scaffolds templated with micrometer-sized polyethylene glycol fibers. Skotak M; Ragusa J; Gonzalez D; Subramanian A Biomed Mater; 2011 Oct; 6(5):055012. PubMed ID: 21931195 [TBL] [Abstract][Full Text] [Related]
17. Electrospun three-dimensional hyaluronic acid nanofibrous scaffolds. Ji Y; Ghosh K; Shu XZ; Li B; Sokolov JC; Prestwich GD; Clark RA; Rafailovich MH Biomaterials; 2006 Jul; 27(20):3782-92. PubMed ID: 16556462 [TBL] [Abstract][Full Text] [Related]
18. Controlled release of cefazolin sodium antibiotic drug from electrospun chitosan-polyethylene oxide nanofibrous Mats. Fazli Y; Shariatinia Z Mater Sci Eng C Mater Biol Appl; 2017 Feb; 71():641-652. PubMed ID: 27987755 [TBL] [Abstract][Full Text] [Related]
19. Nanofibrous chitosan-polyethylene oxide engineered scaffolds: a comparative study between simulated structural characteristics and cells viability. Kazemi Pilehrood M; Dilamian M; Mirian M; Sadeghi-Aliabadi H; Maleknia L; Nousiainen P; Harlin A Biomed Res Int; 2014; 2014():438065. PubMed ID: 24995296 [TBL] [Abstract][Full Text] [Related]
20. Effect of fiber diameter, pore size and seeding method on growth of human dermal fibroblasts in electrospun poly(epsilon-caprolactone) fibrous mats. Lowery JL; Datta N; Rutledge GC Biomaterials; 2010 Jan; 31(3):491-504. PubMed ID: 19822363 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]