These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
518 related articles for article (PubMed ID: 25531006)
1. The effect of different parameters on the development of compressive strength of oil palm shell geopolymer concrete. Kupaei RH; Alengaram UJ; Jumaat MZ ScientificWorldJournal; 2014; 2014():898536. PubMed ID: 25531006 [TBL] [Abstract][Full Text] [Related]
2. Systematic multiscale models to predict the compressive strength of fly ash-based geopolymer concrete at various mixture proportions and curing regimes. Ahmed HU; Mohammed AS; Mohammed AA; Faraj RH PLoS One; 2021; 16(6):e0253006. PubMed ID: 34125869 [TBL] [Abstract][Full Text] [Related]
3. Soft computing models to predict the compressive strength of GGBS/FA- geopolymer concrete. Ahmed HU; Mohammed AA; Mohammed A PLoS One; 2022; 17(5):e0265846. PubMed ID: 35613110 [TBL] [Abstract][Full Text] [Related]
4. Strength and durability performance of alkali-activated rice husk ash geopolymer mortar. Kim YY; Lee BJ; Saraswathy V; Kwon SJ ScientificWorldJournal; 2014; 2014():209584. PubMed ID: 25506063 [TBL] [Abstract][Full Text] [Related]
5. Recycled asphalt pavement - fly ash geopolymers as a sustainable pavement base material: Strength and toxic leaching investigations. Hoy M; Horpibulsuk S; Rachan R; Chinkulkijniwat A; Arulrajah A Sci Total Environ; 2016 Dec; 573():19-26. PubMed ID: 27544652 [TBL] [Abstract][Full Text] [Related]
6. Utilization of blended fluidized bed combustion (FBC) ash and pulverized coal combustion (PCC) fly ash in geopolymer. Chindaprasirt P; Rattanasak U Waste Manag; 2010 Apr; 30(4):667-72. PubMed ID: 19854038 [TBL] [Abstract][Full Text] [Related]
7. Fly ash-based geopolymer lightweight concrete using foaming agent. Abdullah MMAB; Hussin K; Bnhussain M; Ismail KN; Yahya Z; Abdul Razak R Int J Mol Sci; 2012; 13(6):7186-7198. PubMed ID: 22837687 [TBL] [Abstract][Full Text] [Related]
8. Feasibility of manufacturing geopolymer bricks using circulating fluidized bed combustion bottom ash. Chen C; Li Q; Shen L; Zhai J Environ Technol; 2012 Jun; 33(10-12):1313-21. PubMed ID: 22856304 [TBL] [Abstract][Full Text] [Related]
9. Effects of oil palm shell coarse aggregate species on high strength lightweight concrete. Yew MK; Bin Mahmud H; Ang BC; Yew MC ScientificWorldJournal; 2014; 2014():387647. PubMed ID: 24982946 [TBL] [Abstract][Full Text] [Related]
10. Environmental, physical and structural characterisation of geopolymer matrixes synthesised from coal (co-)combustion fly ashes. Alvarez-Ayuso E; Querol X; Plana F; Alastuey A; Moreno N; Izquierdo M; Font O; Moreno T; Diez S; Vázquez E; Barra M J Hazard Mater; 2008 Jun; 154(1-3):175-83. PubMed ID: 18006153 [TBL] [Abstract][Full Text] [Related]
11. Synthesis of thermostable geopolymer from circulating fluidized bed combustion (CFBC) bottom ashes. Xu H; Li Q; Shen L; Wang W; Zhai J J Hazard Mater; 2010 Mar; 175(1-3):198-204. PubMed ID: 19879690 [TBL] [Abstract][Full Text] [Related]
12. Fly ash porous material using geopolymerization process for high temperature exposure. Abdullah MMAB; Jamaludin L; Hussin K; Bnhussain M; Ghazali CMR; Ahmad MI Int J Mol Sci; 2012; 13(4):4388-4395. PubMed ID: 22605984 [TBL] [Abstract][Full Text] [Related]
13. Geopolymerisation of fly ashes with waste aluminium anodising etching solutions. Ogundiran MB; Nugteren HW; Witkamp GJ J Environ Manage; 2016 Oct; 181():118-123. PubMed ID: 27337520 [TBL] [Abstract][Full Text] [Related]
14. Use of Alkaline-Activated Energy Waste Raw Materials in Geopolymer Concrete. Nalewajko M; Bołtryk M Materials (Basel); 2024 May; 17(10):. PubMed ID: 38793319 [TBL] [Abstract][Full Text] [Related]
15. Mechanical Framework for Geopolymer Gels Construction: An Optimized LSTM Technique to Predict Compressive Strength of Fly Ash-Based Geopolymer Gels Concrete. Shi X; Chen S; Wang Q; Lu Y; Ren S; Huang J Gels; 2024 Feb; 10(2):. PubMed ID: 38391478 [TBL] [Abstract][Full Text] [Related]
16. Effect of bio-additives on physico-chemical properties of fly ash-ground granulated blast furnace slag based self cured geopolymer mortars. Karthik A; Sudalaimani K; Vijayakumar CT; Saravanakumar SS J Hazard Mater; 2019 Jan; 361():56-63. PubMed ID: 30176416 [TBL] [Abstract][Full Text] [Related]
17. Comparative study on the characteristics of fly ash and bottom ash geopolymers. Chindaprasirt P; Jaturapitakkul C; Chalee W; Rattanasak U Waste Manag; 2009 Feb; 29(2):539-43. PubMed ID: 18715775 [TBL] [Abstract][Full Text] [Related]
18. Workability and strength of lignite bottom ash geopolymer mortar. Sathonsaowaphak A; Chindaprasirt P; Pimraksa K J Hazard Mater; 2009 Aug; 168(1):44-50. PubMed ID: 19264400 [TBL] [Abstract][Full Text] [Related]
19. Solidification/stabilization of ash from medical waste incineration into geopolymers. Tzanakos K; Mimilidou A; Anastasiadou K; Stratakis A; Gidarakos E Waste Manag; 2014 Oct; 34(10):1823-8. PubMed ID: 24785364 [TBL] [Abstract][Full Text] [Related]
20. Valorization of lead-zinc mine tailing waste through geopolymerization: Synthesis, mechanical, and microstructural properties. Li D; Ramos AO; Bah A; Li F J Environ Manage; 2024 Jan; 349():119501. PubMed ID: 37952378 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]